MATHEMATICS

UNIT I: NUMBER SYSTEMS

1. Real Numbers

Euclid's division lemma, Fundamental Theorem of Arithmetic - Statements after reviewing work done earlier and after illustrating and motivating through examples. Proofs of results

- Irrationality of $\sqrt{ } 2, \sqrt{ } 3, \sqrt{ } 5$. Decimal expansions of rational numbers in terms of terminating/non - terminating recurring decimals.
Exercises: 1.1, 1.2 and 1.4

UNIT II: ALGEBRA

1. Polynomials

Zeros of a polynomial. Relationship between zeros and coefficients of a polynomial with particular reference to quadratic polynomials. Statement and simple problems on division algorithm for polynomials with real coefficients.
Exercises: 2.1, 2.2 and 2.3
2. Pair of Linear Equations In Two Variables

Pair of linear equations in two variables. Geometric representation of different possibilities of solution/inconsistency. Algebraic conditions for number of solutions. Solution of pair of linear equations in two variables algebraically - by substitution, by elimination and by cross multiplication. Simple situational problems must be included. Simple problems on equations reducible to linear equations may be included.
Exercises: 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.11, 3.12, 3.13, 3.14 and 3.20
3. Quadratic Equations

Standard form of a quadratic equation $a x^{2}+b x+c=0,(a \neq 0)$. Solution of a quadratic equation (only real roots) by factorisation and completing the squares, i.e., by using quadratic formula. Relationship between the discriminant and nature of roots. Problems related to day - to - day activities to be incorporated.
Exercises: 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.8, 4.9 and 4.15

4. Arithmetic Progressions

Motivation for studying Arithmetic Progression. Derivation of standard results of finding the nth term and sum of the first n terms.
Exercises: 5.1, 5.2, 5.3 and 5.5

UNIT III: TRIGONOMETRY

1. Trigonometric Ratios

Trigonometric ratios of an acute angle of a right - angled triangle. Proof of their existence (well defined); motivate the ratios, whichever are defined at 0° and 90°. Values (with proofs) of the trigonometric ratios of $30^{\circ}, 45^{\circ}$ and 60°. Relationships between the ratios.
Exercises: 8.1, 8.2, 8.3, 8.7, 8.8 and 8.10
2. Trigonometric Identities

Proof and applications of the identity $\sin ^{2} A+\cos ^{2} A=1, \tan ^{2} A+1=\operatorname{Sec}^{2} A, \operatorname{Cosec}^{2} A$ $=1+\operatorname{Cot}^{2} A$. Only simple identities to be given. Trigonometric ratios of complementary angles. Exercises: 8.11, 8.12, 8.13, 8.14, 8.15 and 8.17

3. Heights And Distances

Simple and believable problems on heights and distances. Problems should not involve more than two right triangles. Angles of elevation/depression should be only $30^{\circ}, 45^{\circ}, 60^{\circ}$.
Exercises: 9.1 and 9.2

UNIT IV: COORDINATE GEOMETRY

1. Lines (In two-dimensions)

Review the concepts of coordinates done earlier including graphs of linear equations. Awareness of geometrical representation of quadratic polynomials. Distance between two points and section formula (internal), Area of a triangle.
Exercises: 7.1, 7.2, 7.3 and 7.5

UNIT V: GEOMETRY

1. Triangles

Definitions, examples, counter examples of similar triangles.
i) (Prove) If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.
ii) (Motivate) If a line divides two sides of a triangle in the same ratio, the line is parallel to the third side.
iii) (Motivate) If in two triangles, the corresponding angles are equal, their corresponding sides are proportional and the triangles are similar.
iv) (Motivate) If the corresponding sides of two triangles are proportional, their corresponding angles are equal and the two triangles are similar.
v) (Motivate) If one angle of a triangle is equal to one angle of another triangle and the sides including these angles are proportional, the two triangles are similar.
vi) (Motivate) If a perpendicular is drawn from the vertex of the right angle of a right triangle to the hypotenuse; the triangles on each side of the perpendicular are similar to the whole triangle and to each other.
vii) (Prove) The ratio of the areas of two similar triangles is equal to the ratio of the squares on their corresponding sides.
viii) (Prove) In a right triangle, the square on the hypotenuse is equal to the sum of the squares of the other two sides.
ix) (Prove) In a triangle, if the square on one side is equal to the sum of the squares of the other two sides, the angle opposite to the first side is a right angle.

Exercises: 6.1 [Only Numerical Problems are included]
Exercises: 6.2, 6.3 [Only Numerical Problems are included] 6.4,
[Only Numerical Problems are included]
6.6, 6.7 and 6.8 [Both Numerical \& Theoretical Problems are included]

2. Circles

Tangents to a circle motivated by chords drawn from points coming closer and closer to the point.
i) (Prove) The tangent at any point of a circle is a perpendicular to the radius through the point of contact.
ii) (Prove) The lengths of tangents drawn from an external point to a circle are equal.

Exercises: 10.1, 10.2 and 10.3

3. Constructions

i) Division of a line segment in a given ratio (internally).
ii) Tangent to a circle from a point outside it.
iii) Construction of a triangle similar to a given triangle. Exercises: 11.1, 11.2 and 11.3

UNIT VI: MENSURATION

1. Areas Of Plane Figures

Motivate the area of a circle; area of sectors and segments of a circle. Problems based on area and perimeter/circumference of the above said plane figures. (In calculating area of segment of a circle, problem should be restricted to central angles of $60^{\circ}, 90^{\circ}$, and 120° only. Plane figures involving triangles, simple quadrilaterals and circles should be taken).
Exercises: 12.1, 12.2, 12.3 and 12.4
2. Surface Areas And Volumes
i) Problems on finding surface areas and volumes of combinations of any two of the following: cubes, cuboids, spheres, hemispheres and right circular cylinders/cones. Frustum of a cone.
ii) Problems involving converting one type of metallic solid into another and other mixed problems. (Problems with combination of not more than two different solids may be taken). Exercises: 13.1, 13.2, 13.3 and 13.4

UNIT VII: STATISTICS AND PROBABILITY

1. Statistics

Mean, median and mode of grouped data (bimodal situation to be avoided) Cumulative frequency graph.
Exercises: 14.1, 14.3, 14.4 and 14.5
2. Probability

Classical definition of Probability, Connection with probability has been given in class IX. Simple problems on single events not using set notation.
Exercises: 15.1, 15.2 and 15.5

PRESCRIBED TEXTBOOK:

- Core Mathematics For Class 10

Goyal Brothers Prakashan, 11/1903, Chuna Mandi, Pahar Ganj, New Delhi - 110055.
NOTE: Only the above mentioned exercises are to be studied and the rest may be omitted.

