

Goa Board Class IX Mathematics Term II Sample Paper – 4 Solution

(SECTION - A)

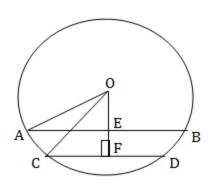
- Correct Answer: C An inconsistent system of two linear equations in two variables will have no solution.
- 2. Correct Answer: C
 Range of data 70, 65, 75, 71, 36, 55, 61, 62, 41, 40, 39, 35 is
 Range = Greatest value Smallest value = 75 35 = 40
- **3.** Correct Answer: D The equation of x-axis is y = 0.

1

4. Correct Answer: C Let their heights be h and 2h respectively and radii be r and R respectively. $\pi r^2 h = \pi R^2 (2h)$

$$\Rightarrow \frac{r^2}{R^2} = \frac{2}{1}$$
$$\Rightarrow \frac{r}{R} = \frac{\sqrt{2}}{1}$$
$$\Rightarrow r : R = \sqrt{2} :$$

- **5.** Correct Answer: B Range = Maximum value – Minimum value = 61 – 9 = 52
- 6. Correct Answer: C



Sample Paper – 4 Solution

$$AE = \frac{1}{2}AB$$

$$\Rightarrow AE = 8 \text{ cm}$$

$$\frac{1}{2}\text{ CD}$$

$$\Rightarrow CF = 6 \text{ cm}$$

Let EF = x.
We have,
Radius = 0A = 10 \text{ cm}

$$OE = \sqrt{(10)^2 - (8)^2} = \sqrt{100 - 64} = \sqrt{36} = 6 \text{ cm}$$

$$OF = \sqrt{(10)^2 - (6)^2} = \sqrt{100 - 36} = \sqrt{64} = 8 \text{ cm}$$

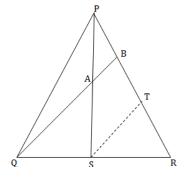
$$\Rightarrow x = OF - OE = 8 - 6 = 2 \text{ cm}$$

7. Correct Answer: B Outside diameter = 16 cm Outside radius (R) = 8 cm Inside diameter = 12 cm Inside radius (r) = 6 cm Length of the cylindrical tube (h) = 7 m = 700 cm Let V be the volume of metal in the tube. $V = \pi (R^2 - r^2) h$ $\Rightarrow V = \frac{22}{7} (8^2 - 6^2) \times 700 \text{ cm}^2 = 61600 \text{ cm}^3.$

Therefore, the volume of metal in the tube is 61600 cm^3 .

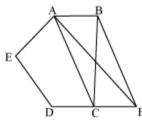
8. Correct Answer: D

Draw ST || BQ meeting PR at T In \triangle QBR, ST || BQ \therefore TR = TB [i] [Line drawn through the mid-point of a side of a triangle, parallel to the other bisects the third side] Also in \triangle PST, AB || ST \therefore PB = BT [ii] \therefore TR = TB = PB [From (i) and (ii)] \therefore PB = $\frac{1}{3}$ PR = $\frac{1}{3} \times 9 = 3$ cm



Sample Paper – 4 Solution

9. \triangle ACB and \triangle ACF lie on the same base AC and are between the same parallel lines AC and BF.

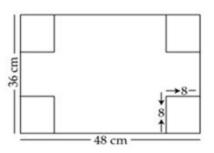


 \therefore area(\triangle ACB) = area(\triangle ACF)

10.Length of the box = l = 48 – 8 – 8 = 32 cm.

Breadth of the box = b = 36 - 8 - 8 = 20 cm.

Height = h = 8 cm

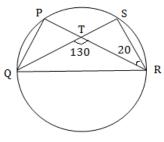


Volume of the box formed = $l \times b \times h = 32 \times 20 \times 8 = 5120 \text{ cm}^3$.

11. First seven natural numbers are 1, 2, 3, 4 5, 6, and 7.

 \overline{X} = arithmetic mean. $\therefore \overline{X} = \frac{1+2+3+4+5+6+7}{7} = \frac{28}{7} = 4$

12. Given, P, Q, R and S are four points on a circle. PR and QS intersect at a point T such that $m \angle QTR = 130^{\circ}$ and $m \angle TRS = 20^{\circ}$



 $m \angle PQT = m \angle SRT = 20^{\circ}$ $m \angle PTQ = 180^{\circ} - 130^{\circ} = 50^{\circ}$ $m \angle QPR = 180^{\circ} - (20^{\circ} + 50^{\circ}) = 110^{\circ}$

Sample Paper – 4 Solution

13. The event that at most one head occurred = 550

$$\therefore$$
 Probability of at most one head occuring = $\frac{550}{1000} = \frac{11}{20}$

14.

 $Mean = \frac{Sum of all observations}{Total number of observations}$ $\Rightarrow 15 = \frac{10+12+18+11+p+19}{6}$ $\Rightarrow 90 = 70 + p$ $\Rightarrow p = 90 - 70$ $\Rightarrow p = 20$ (SECTION - C)

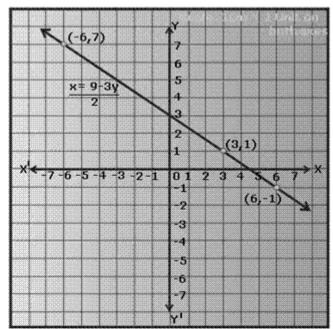
15.2x + 3y = 9

$$\Rightarrow 2x = 9 - 3y$$
$$\Rightarrow x = \frac{9 - 3y}{2}$$

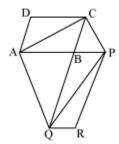
(Expressing one variable in terms of the other) Put y = 1, then x = 3Put y = -1, then x = 6Put y = 7, then x = -6

Х	3	6	-6
у	1	-1	7

On plotting the graph, we get



16.Construction: Let us join AC and PQ.

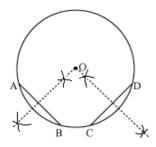


 $\Delta ACQ \text{ and } \Delta AQP \text{ are on same base } AQ \text{ and between same parallel lines } AQ \text{ and } CP.$ $\therefore \text{ area}(\Delta ACQ) = \text{ area}(\Delta APQ)$ $\Rightarrow \text{ area}(\Delta ACQ) - \text{ area}(\Delta ABQ) = \text{ area}(\Delta APQ) - \text{ area}(\Delta ABQ)$ $\Rightarrow \text{ area}(\Delta ABC) = \text{ area}(\Delta QBP) \qquad \qquad \dots (1)$ Since AC and PQ are diagonals of parallelograms ABCD and PBQR respectively $\therefore \text{ area}(\Delta ABC) = \frac{1}{2} \text{ area}(ABCD) \qquad \qquad \dots (2)$ $\therefore \text{ area}(\Delta QBP) = \frac{1}{2} \text{ area}(PBQR) \qquad \qquad \dots (3)$ From equations (1), (2) and (3), we have $\frac{1}{2} \text{ area}(ABCD) = \frac{1}{2} \text{ area}(PBQR)$ $\therefore \text{ area}(ABCD) = \frac{1}{2} \text{ area}(PBQR)$

17.Following are the steps of construction:

Step 1: On the given circle, take any two different chords AB and CD and draw the perpendicular bisectors of these chords.

Step 2: Let these perpendicular bisectors meet at point 0. 0 is the centre of the given circle.



18.The roller is cylindrical in shape.

Height (*h*) of cylindrical roller = Length of roller = 120 cm Radius (*r*) of the circular end of roller = $\left(\frac{84}{2}\right)$ cm = 42 cm

C.S.A. of roller = $2\pi rh = 2 \times \frac{22}{7} \times 42 \times 120 = 31680 \text{ cm}^2$

Area of field = $500 \times C.S.A.$ of roller = (500×31680) cm² = 15840000 cm² Area of field = 1584 m².

OR

Height of the cylinder = 14 cm Let diameter of the cylinder be 'd' and the radius of its base be 'r'. Curved surface area of cylinder = 88 cm² $\Rightarrow 2\pi rh = 88$ $\Rightarrow \pi dh = 88$ $\Rightarrow d = 88 \times \frac{7}{22} \times \frac{1}{14}$ $\Rightarrow d = 2$

 \Rightarrow d = 2

The diameter of the base of the cylinder is 2 cm.

19. Total observations in the given data set are 10 (even number). So median of this data set will be mean of the $\frac{10}{2}$ i.e. 5th and $\frac{10}{2}$ + 1 i.e. the 6th observations. So, median of data = $\frac{5^{th} \text{ observation} + 6^{th} \text{ observation}}{2}$ $\Rightarrow 63 = \frac{x + x + 2}{2}$ $\Rightarrow 63 = \frac{2x + 2}{2}$ $\Rightarrow 63 = x + 1$ $\Rightarrow x = 62$

Sample Paper – 4 Solution

20.

$$x - \frac{2}{3}y = \frac{8}{3} \quad \dots \dots (1)$$

$$\frac{2x}{5} - y = \frac{7}{5} \quad \dots \dots (2)$$

From (1)

$$x = \frac{8}{3} + \frac{2}{3}y = \frac{8 + 2y}{3} \quad \dots \dots (3)$$

Substituting the value of y in (2),

$$\frac{2}{5} \left(\frac{8 + 2y}{3}\right) - y = \frac{7}{5}$$

$$\Rightarrow \frac{16 + 4y}{15} - y = \frac{7}{5}$$

$$\Rightarrow 16 + 4y - 15y = 21$$

$$\Rightarrow -11y = 5$$

$$y = \frac{-5}{11}$$

Substituting the value of *y* in (3),

$$x = \frac{8 + 2\left(\frac{-5}{11}\right)}{3} = \frac{8 - \frac{10}{11}}{3}$$
$$= \frac{88 - 10}{11 \times 3} = \frac{78}{11 \times 3}$$
$$x = \frac{26}{11}$$
$$x = \frac{26}{11}, y = \frac{-5}{11}$$

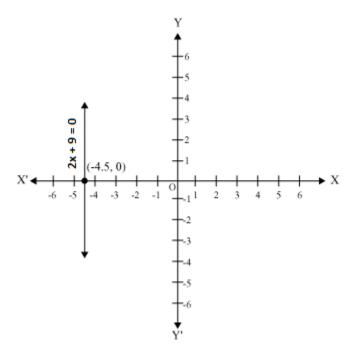
OR

i. In one variable 2x + 9 = 0 represents a point $x = \frac{-9}{2} = -4.5$ as shown in following figure.

ii. In two variables 2x + 9 = 0 represents a straight line passing through point (- 4.5, 0) and parallel to the y-axis.

As it is a collection of all points of plane, having their x-coordinate as 4.5.

Sample Paper – 4 Solution



21.Side (a) of the cube = 12 cm Volume of the cube = $a^3 = (12 \text{ cm})^3 = 1728 \text{ cm}^3$ Let the side of each smaller cube be l.

Volume of each smaller cube = $\left(\frac{1728}{8}\right)$ cm³ = 216 cm³

 $l^3 = 216 \text{ cm}^3$

 \Rightarrow l = 6 cm

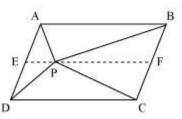
Thus, the side of each smaller cube is 6 cm.

Ratio between surface areas of the cubes = $\frac{\text{Surface area of the bigger cube}}{\text{Surface area of the smaller cube}}$

$$=\frac{6a^2}{6l^2}=\frac{6(12)^2}{6(6)^2}=\frac{4}{1}$$

So, the required ratio between surface areas of the cubes is 4: 1.

22.



Let us draw a line segment EF, passing through the point P and parallel to line segment AB. In parallelogram ABCD we find that

```
AB || EF(By construction) ...(1)ABCD is a parallelogram
```


Sample Paper – 4 Solution

(Opposite sides of a parallelogram)(2)

 \Rightarrow AE || BF

From equations (1) and (2), we have

AB || EF and AE || BF

So, quadrilateral ABFE is a parallelogram

Now, we may observe that \triangle APB and parallelogram ABFE are lying on the same base AB and between the same parallel lines AB and EF.

$$\operatorname{area}(\Delta APB) = \frac{1}{2}\operatorname{area}(ABFE)$$
 ... (3)

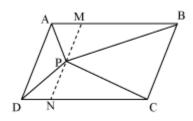
Similarly, for ΔPCD and parallelogram EFCD

$$\operatorname{area}(\Delta PCD) = \frac{1}{2}\operatorname{area}(EFCD)$$
 ... (4)

Adding equations (3) and (4), we have

area
$$(\Delta APB)$$
 + area (ΔPCD) = $\frac{1}{2}$ [area $(ABFE)$ + area $(EFCD)$]
area (ΔAPB) + area (ΔPCD) = $\frac{1}{2}$ area $(ABCD)$... (5)

Draw a line segment MN, passing through point P and parallel to line segment AD. In parallelogram ABCD we may observe that,



MN || AD

(By construction) ... (6)

(Opposite sides of a parallelogram)

ABCD is a parallelogram

$$\therefore AB \mid\mid DC \\ \Rightarrow AM \mid\mid DN$$

From equations (6) and (7), we have

MN || AD and AM || DN

So, quadrilateral AMND is a parallelogram

Now, \triangle APD and parallelogram AMND are lying on the same base AD and between the same parallel lines AD and MN.

$$\therefore \text{ area } (\Delta \text{APD}) = \frac{1}{2} \text{ area } (\text{AMND}) \qquad \dots (8)$$

Similarly, for \triangle PCB and parallelogram MNCB

area (
$$\Delta$$
PCB) = $\frac{1}{2}$ area (MNCB) ... (9)

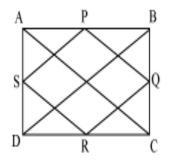
Adding equations (8) and (9), we have

Sample Paper – 4 Solution

Area
$$(\Delta APD)$$
 + area (ΔPCB) = $\frac{1}{2}$ [area $(AMND)$ + area $(MNCB)$]
Area (ΔAPD) + area (ΔPCB) = $\frac{1}{2}$ area $(ABCD)$... (10)

On comparing equations (5) and (10), we have Area(\triangle APD) + area(\triangle PBC) = area(\triangle APB) + area(\triangle PCD)

23.Let us join AC and BD



In $\triangle ABC$,

P and Q are the mid-points of AB and BC respectively

 \therefore PQ || AC and PQ = $\frac{1}{2}$ AC (Mid-point theorem) ... (1)

Similarly in $\triangle ADC$

SR || AC and SR = $\frac{1}{2}$ AC (Mid-point theorem). ...(2)

Clearly, PQ || SR and PQ = SR

As in quadrilateral PQRS, one pair of opposite sides is equal and parallel to each other, so, it is a parallelogram.

 \therefore PS || QR and PS = QR (opposite sides of parallelogram)... (3) Now, in \triangle BCD, Q and R are the mid-points of sides BC and CD respectively.

 \therefore QR || BD and QR = $\frac{1}{2}$ BD (Mid-point theorem) ... (4)

But diagonals of a rectangle are equal

$$\therefore AC = BD \tag{5}$$

Now, by using equation (1), (2), (3), (4), (5) we can say that

PQ = QR = SR = PS

So, PQRS is a rhombus.

24.Number of times 2 heads come up = 72

Total number of times the coins were tossed = 200

 $P(2 \text{ heads will come up}) = \frac{\text{Number of times 2 heads come up}}{\text{Total number of times the coins were tossed}} = \frac{72}{200} = \frac{9}{25}$

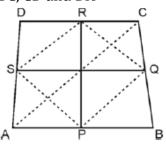
Sample Paper – 4 Solution

(SECTION - D)

25.Let ABCD be a quadrilateral. P, Q, R, and S are mid points of AB, BC, CD and DA respectively.

(Mid-point theorem)

Join PQ, QR, RS and SP. Join AC. In Δ DAC, SR || AC And SR = $\frac{1}{2}$ AC (Mid In Δ BAC, PQ || AC and PQ = $\frac{1}{2}$ AC



Clearly, PQ || SR and PQ = SR As in quadrilateral PQRS, one pair of opposite sides is equal and parallel to each other, so, it is a parallelogram. \Rightarrow PQRS is a parallelogram

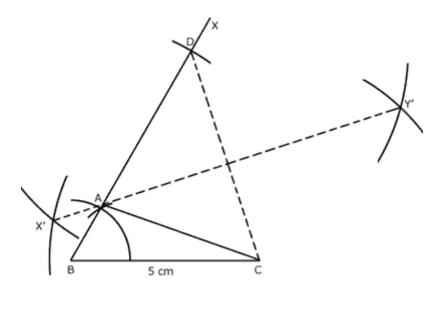
∴ PR and SQ are diagonals of PQRS, therefore PR & SQ bisect each other.

26.Construction:

- 1. Draw BC = 5 cm
- 2. Draw m \angle CBX = 60° and cut off BD = 7.7 cm.

3. Join CD and draw its perpendicular bisector meeting BD at A.

4. Join AC. \triangle ABC is the required triangle.



The steps of construction for the required triangle are as follows:

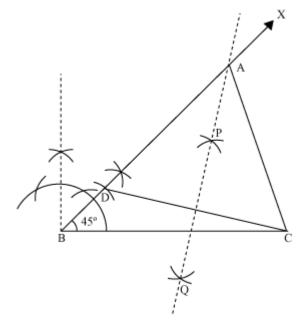
Step 1: Draw the line segment BC = 8 cm and at point B make an angle of 45° say $\angle XBC$.

Step 2: Cut the line segment BD = 3.5 cm (equal to AB – AC) on ray BX.

Sample Paper – 4 Solution

Step 3: Join DC and draw the perpendicular bisector PQ of DC.

Step 4: Let it intersect BX at point A. Join AC. \triangle ABC is the required triangle.



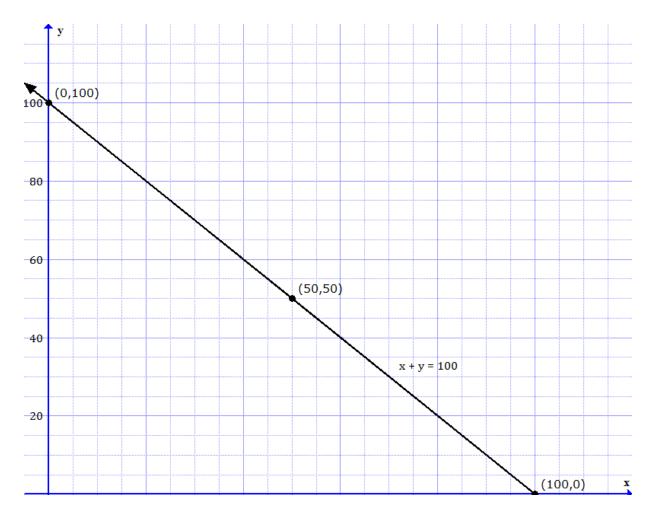
27.According to given condition,

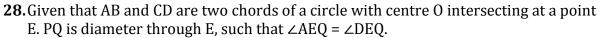
x + y = 100...(i)Now, put the value x = 0 in equation (i). $0 + y = 100 \Rightarrow y = 100$.The solution is (0, 100)Putting the value x = 50 in equation (i)We get, $50 + y = 100 \Rightarrow y = 100 - 50 \Rightarrow y = 50$.The solution is (50, 50).Put the value x = 100 in equation (i).100 + y = 100, $y = 100 - 100 \Rightarrow y = 0$.The solution is (100, 0).

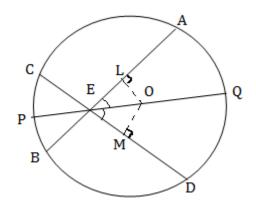
Х	0	50	100
у	100	50	0

Now, plot the points (0, 100), (50, 50), (100, 0) and draw lines passing through the points.

Sample Paper – 4 Solution







To prove that AB = CD. Draw perpendicular OL and OM on chords AB and CD respectively. Now, $m \angle LOE = 180^{\circ} - 90^{\circ} - m \angle LEO = 90^{\circ} - m \angle LEO$ [Angle sum property of a triangle] $\Rightarrow m \angle LOE = 90^{\circ} - m \angle AEQ$ $\Rightarrow m \angle LOE = 90^{\circ} - m \angle DEQ$

www.topperlearning.com

 $\Rightarrow m \angle LOE = 90^{\circ} - m \angle MEQ$ $\Rightarrow \angle LOE = \angle MOE$ In \triangle OLE and \triangle OME, $\angle LEO = \angle MEO$ $\angle LOE = \angle MOE$ EO = EO $\triangle OLE \cong \triangle OME$ OL = OM AB = CD

29. i. Cost of white washing the dome from inside = Rs 498.96Cost of white washing 1 m² area = Rs. 2

: C.S.A. of the inner side of dome = $\left(\frac{498.96}{2}\right)$ m² = 249.48 m²

ii. Let inner radius of hemispherical dome be r. C.S.A of the inner side of the dome = 249.48 m² $2\pi r^2 = 249.48 m^2$ $\Rightarrow 2 \times \frac{22}{7} \times r^2 = 249.48 m^2$ $\Rightarrow r^2 = \left(\frac{249.48 \times 7}{2 \times 22}\right) m^2 = 39.69 m^2$

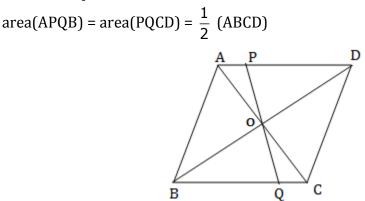
$$\Rightarrow$$
 r = 6.3 m

Volume of air inside the dome = Volume of the hemispherical dome

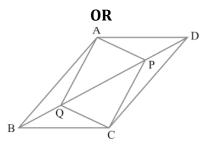
$$=\frac{2}{3}\pi r^{3}$$
$$=\left[\frac{2}{3}\times\frac{22}{7}\times(6.3)^{3}\right]m^{3}$$
$$=523.908 \text{ m}^{3}$$

Thus, the volume of air inside the dome is approximately 523.9 m³.

30.We have to prove that



Since diagonals of a parallelogram divide it into two triangles of equal area. Therefore, area(\triangle ABC) = area(\triangle ACD) \Rightarrow area(ABQO) + area(\triangle COQ) = area(CDPO) + area(\triangle AOP) ...(i) Consider \triangle AOP and \triangle COQ. In these two triangles, we have: $\angle AOP = \angle COQ$ [Vertically opposite angles] OA = OC[Diagonals of a ||^{gm} bisect each other] $\angle OAP = \angle OCQ$ [Alternate angles] $\Rightarrow \triangle AOP \cong \triangle COQ$ \Rightarrow area($\triangle AOP$) = area($\triangle COQ$) ...(ii) From (i) and (ii), area(ABQO) + area(\triangle AOP) = area(CDPO) + area(\triangle COQ) \Rightarrow area(ABQP) = area(CDPQ) \Rightarrow area(APQB) = area(PQCD)



i. In \triangle APD and \triangle CQB,

 \angle ADP = \angle CBQ (Alternate interior angles for BC || AD)

AD = CB (Opposite sides of parallelogram ABCD)

DP = BQ (Given)

 $\therefore \Delta APD \cong \Delta CQB$ (Using SAS congruence rule)

As we had observed that $\triangle APD \cong \triangle CQB$,

 \therefore AP = CQ (CPCT)

ii. In \triangle AQB and \triangle CPD,

 \angle ABQ = \angle CDP (Alternate interior angles for AB || CD)

```
AB = CD (Opposite sides of parallelogram ABCD)
```

BQ = DP (Given)

 $\therefore \Delta AQB \cong \Delta CPD$ (Using SAS congruence rule)

 $\Delta AQB \cong \Delta CPD$,

 \therefore AQ = CP (CPCT)

iii. From the result obtained above,

```
AQ = CP and AP = CQ
```

Since opposite sides in quadrilateral APCQ are equal to each other, APCQ is a parallelogram.

Sample Paper – 4 Solution

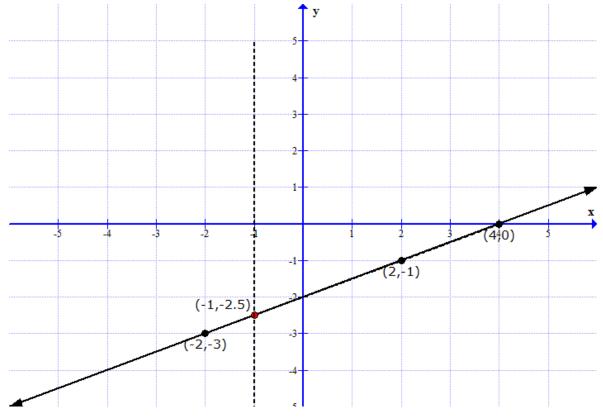
31. The equation of the line given to us is x - 2y = 4.

x - 2y = 4 $\Rightarrow y = \frac{x - 4}{2}$

When x = 0, y = -2; When x = 2, y = -1; When x = -2, y = -3; and so on. We can plot a table of value of x and y as:

Х	0	2	-2	4
у	-2	-1	-3	0

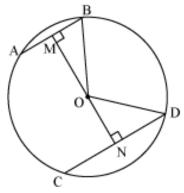
Now plot the points from the table on a graph paper and join them to get a straight line:



From the graph we can see that when x = -1, y = -2.5.

32. Edge of the cubical tank = 1.5 m = 150 cm Surface area of the tank = $5 \times 150 \times 150$ cm² Area of each square tile = side × side = 25×25 cm² The number of tiles required = $\frac{\text{Suirface area of the tank}}{\text{area of each tile}} = \frac{5 \times 150 \times 150}{25 \times 25} = 180$ Cost of 1 dozen tiles, i.e. cost of 12 tiles = Rs. 360 Cost of one tile = Rs. $\frac{360}{12}$ = Rs. 30 The cost of 180 tiles = 180×30 = Rs. 5400

33.Construction: Draw OM \perp AB and ON \perp CD. Join OB and OD.



BM =
$$\frac{AB}{2} = \frac{5}{2}$$
 (Perpendicular from centre bisects the chord)
ND = $\frac{CD}{2} = \frac{11}{2}$
Let ON be x, so OM will be 6 - x
In Δ MOB
OM² + MB² = OB²
(6 - x)² + $\left(\frac{5}{2}\right)^2$ = OB²
36 + x² - 12x + $\frac{25}{4}$ = OB² ... (1)
In Δ NOD
ON² + ND² = OD²
x² + $\left(\frac{11}{2}\right)^2$ = OD²
x² + $\left(\frac{11}{2}\right)^2$ = OD²
x² + $\left(\frac{11}{2}\right)^2$ = OD²
(radii of same circle)
So, from equation (1) and (2)
36 + x² - 12x + $\frac{25}{4}$ = x² + $\frac{121}{4}$
 $\Rightarrow 12x = 36 + \frac{25}{4} - \frac{121}{4} = \frac{144 + 25 - 121}{4} = \frac{48}{4} = 12$
 $\Rightarrow 12x = 12$

 \Rightarrow x = 1

From equation (2)

$$\Rightarrow (1)^{2} + \left(\frac{121}{4}\right) = 0D^{2}$$

$$\Rightarrow 0D^{2} = 1 + \frac{121}{4} = \frac{125}{4}$$

$$\Rightarrow 0D = \frac{5}{2}\sqrt{5}$$

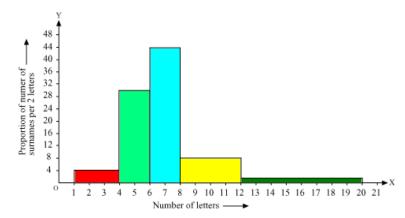
Hence, radius of the circle is $\frac{5}{2}\sqrt{5}$ cm.

34.

i. Given data has class interval of varying width. We need to compute the adjusted Frequency

Number of letters	Frequency (Number of surnames)	Width of class	Length of rectangle
1 – 4	6	3	$\frac{6\times 2}{3}=4$
4 - 6	30	2	$\frac{30\times 2}{2} = 30$
6 - 8	44	2	$\frac{44 \times 2}{2} = 44$
8 - 12	16	4	$\frac{16 \times 2}{4} = 8$
12 – 20	4	8	$\frac{4 \times 2}{8} = 1$

Now by taking number of letters on the x-axis and proportion of number of surnames per 2 letters interval on the y-axis and choosing an appropriate scale (1 unit = 4 students for y-axis) we will construct the histogram as below.



ii. The class interval in which maximum number of surnames lies is (6 – 8) with 44 surnames.