

ICSE X | CHEMISTRY

Sample Paper – 3 Solution

ICSE Board Class X Chemistry Sample Paper – 3 Solution

SECTION I

Answer 1

a.

- i. Calcium oxide
- ii. Alcoholic potassium hydroxide
- iii. Acetylene or ethyne
- iv. Copper oxide
- v. Potassium iodide solution

b.

i.

1, 1, 2, 2-Tetrabromoethane

- ii. $4\text{FeS}_2 + 110_2 \xrightarrow{\Delta} 2\text{Fe}_2O_3 + 8\text{SO}_2$
- iii. $Cu + 2H_2SO_4$ (conc.) $\longrightarrow CuSO_4 + 2H_2O + SO_2$
- iv. $4NH_3 + 3O_2 \longrightarrow 2N_2 + 6H_2O$
- v. $2H_2S + SO_2 \longrightarrow 2H_2O + 3S$

C.

- i. Haematite
- ii. Fe_2O_3
- iii. +2
- iv. +3
- v. Dry chlorine

d.

i. Yellow-coloured particles are seen suspended in the clear solution and these particles do not settle down, i.e. a solution of colloidal sulphur is formed.

$$2H_2S + SO_2 \longrightarrow 2H_2O + 3S$$

ii. On adding ammonium hydroxide drop by drop to a solution of copper sulphate, a bluish white precipitate is formed which dissolves in excess of ammonium hydroxide to give a deep blue solution.

 $CuSO_4 + 2NH_4OH \longrightarrow Cu(OH)_2 + (NH_4)_2SO_4$ $Cu(OH)_2 + 4NH_4OH \longrightarrow [Cu(NH_3)_4](OH)_2 + 4H_2O$

ICSE X | CHEMISTRY

Sample Paper – 3 Solution

iii. A reddish brown precipitate is formed.

 $FeCl_3 + 3NaOH \longrightarrow Fe(OH)_3 + 3NaCl$

iv. A white precipitate is formed which is soluble in excess of NaOH.

 $ZnSO_4 + 2NaOH \longrightarrow Zn(OH)_2 + Na_2SO_4$

 $Zn(OH)_2 + 2NaOH \longrightarrow Na_2ZnO_2 + 2H_2O$

v. An insoluble white precipitate of barium sulphate and a solution of sodium chloride are obtained, and barium sulphate is insoluble in all the mineral acids.

 $BaCl_2 + Na_2SO_4 \longrightarrow BaSO_4 + 2NaCl$

e.

- i. A: Ammonium chloride
 B: Slaked lime or sodium hydroxide
 C: Ammonia
 J: Nitrogen dioxide
 K: Oxygen
- ii. D: N₂ + 3H₂ \longrightarrow 2NH₃ E: 4NH₃ + 5O₂ \xrightarrow{Pt} 4NO + 6H₂O F: 2NO + O₂ $\xrightarrow{50^{\circ}C}$ 2NO₂ G: 4NO₂ + 2H₂O + O₂ \longrightarrow 4HNO₃ H: CaO + 2NHO₃ (dil.) \longrightarrow Ca(NO₃)₂ + H₂O I: 2Ca(NO₃)₂ $\xrightarrow{\Delta}$ 2CaO + 4NO₂ + O₂

g.

- i. 1. Eight elements are present in the third period.
 - 2. Fluorine < Oxygen < Nitrogen < Carbon < Boron < Beryllium < Lithium
 - 3. Inert gases have a complete octet, i.e. eight electrons in the outermost shell, so they neither lose nor gain electrons; hence, they have zero valency.
- Group: As we move down the group, ionisation potential decreases.
 Period: As we move across the period from left to right, ionisation potential increases.

h.

- i. Ethane
- ii. Methane
- iii. Ethene
- iv. Methanol
- v. Ethyne

Sample Paper – 3 Solution

SECTION II

Answer 2

a.

i.

Cathode	Anode
(i) Lead	Bromine vapour
(ii) Hydrogen	Oxygen
(iii) Hydrogen	Oxygen

- ii. 1. Electroplating
 - 2. Electro refining
 - 3. Electrometallurgy

b.

i. Molar mass of AgNO₃ = 108 + 14 + 48 = 170 g Molar mass of AgCl = 108 + 35.5 = 143.5 g 143.5 g of AgCl was precipitated by 170 g of AgNO₃. 287 of AgCl will be precipitated by = $\frac{170}{143.5} \times 287$ = 340 g of AgNO₃ ii. Empirical formula weight of CH₂O = 12 + 2 + 16 \therefore n= $\frac{\text{Molecular weight}}{\text{Empirical formula weight}}$ = $\frac{180}{30} = 6$ Molecular formula = (CH₂O)₆ = C₆H₁₂O₆

Sample Paper – 3 Solution

Answer 3

a.

- **C** Brittle
- D Acidic oxides
- F Discharged at the anode
- I Covalent chlorides
- L 5, 6 or 7 valence electrons

b.

i. Hall's process Al_2O_3 . $2H_2O + 2NaOH \xrightarrow{\Delta} 2NaAlO_2 + 3H_2O$ $NaAlO_2 + 2H_2O \longrightarrow NaOH + Al(OH)_3$ $2 Al(OH)_3 \xrightarrow{\Delta} Al_2O_3 + 3H_2O$

- ii. Cryolite. It is used in the molten state.
- iii. $0^{2-} 2e^{-} \longrightarrow [0]$ $2[0] \longrightarrow 0_{2}$

Answer 4

a.

i. $CH_2 = CH_2$

- ii. Addition reaction
- iii. Reddish brown bromine solution decolourises.
- iv. Ethanol
- v. Dehydration of ethanol by conc. H_2SO_4

b.

i. 1. 22.4 dm³

- 2. Molar
- ii. Avogadro's law: Under similar conditions of temperature and pressure, equal volumes of all gases contain equal number of molecules.
- iii. Molar mass of $CaCO_3 = 40 + 12 + 48 = 100$ No. of moles = 10/100 = 0.1 mole

Sample Paper – 3 Solution

Answer 5

a.

- i. An alkali and a base:
 - a) Alkalis are soluble in water, whereas bases may or may not be soluble in water.
 - b) All alkalis are bases, but all bases are not alkalis.
- ii. The chemical nature of an aqueous solution of HCl and an aqueous solution of NH_3
 - a) The aqueous solution of HCl is acidic in nature. It can turn blue litmus red.
 - b) The aqueous solution of NH_3 is basic in nature. It can turn red litmus blue.

b.

- i. When sodium hydroxide is added to zinc nitrate, a white precipitate of zinc hydroxide is formed which is soluble in excess of NaOH. On adding sodium hydroxide solution to calcium nitrate, a white precipitate of Ca $(OH)_2$ is formed which is sparingly soluble.
- ii. Sodium hydroxide when added to iron (II) chloride forms a dirty green ppt. of Fe(OH)₂ , whereas iron (III) chloride forms a reddish brown ppt. with NaOH.

c. (A) Decomposition of salt

(B) Oxidising property

d.

- i. Zinc displaces copper, and the blue colour of the solution changes.
- ii. NO₂, ZnO and O₂ are formed.

Answer 6

a.

- i. Copper sulphate and ammonium chloride
- ii. Potassium acetate and sodium sulphide

b.

- i. Reduction
- ii. Oxidation
- iii. Reduction

C.

i. First element – Lithium

Last element – Neon

- ii. On moving from top to bottom in a group, the atomic size increases.
- iii. Chlorine
- iv. They have seven electrons in their valence shell, and they need one electron to complete their octet.

ICSE X | CHEMISTRY

Sample Paper – 3 Solution

Answer 7

a.

- i. B or Dehydrating agent
- ii. D or Oxidising agent
- iii. C or Non-volatile acid
- iv. A or Acid
- v. A or Acid

b.

- i. A: Conc. sulphuric acid and B: NaCl
- ii. NaCl + H₂SO₄ (conc.) $\xrightarrow{\text{below}}$ NaHSO₄ + HCl
- iii. Bring a glass rod dipped in NH4OH in contact with the mouth of a gas jar. If dense white fumes appear immediately, then the gas jar is filled with HCl.
- iv. HCl is heavier than air.