

ICSE Board Class X Chemistry Sample Paper – 1 Solution

SECTION I

Answer 1

a.

- i. Chromium oxide
- ii. Calcium sulphite
- iii. Calcium oxide or quick lime
- iv. Sulphur
- v. Galvanisation

b.

- i. $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$
- ii. $CuO + H_2SO_4 \rightarrow CuSO_4 + H_2O$
- iii. $Na_2CO_3 + MgCl_2 \rightarrow MgCO_3 + 2NaCl$
- iv. $2Fe + 3Cl_2 \rightarrow 2FeCl_3$
- v. Fe + S $\xrightarrow{\Delta}$ FeS

c.

- i. $S + 6HNO_3$ (conc.) $\rightarrow H_2SO_4 + 6NO_2 + 2H_2O$
- ii. $P_4 + 20HNO_3$ (conc.) $\rightarrow 4H_3PO_4 + 20NO_2 + 4H_2O$
- iii. $Cu + 4HNO_3$ (conc.) $\rightarrow Cu(NO_3)_2 + 2H_2O + 2NO_2$
- iv. $Zn + 4HNO_3$ (conc.) $\rightarrow Zn(NO_3)_2 + 2H_2O + 2NO_2$
- v. HNO_3 (conc.) + 3HCl (conc.) $\rightarrow NOCl + 2H_2O + 2[Cl]$

d.

- 1. (i) decreases (ii) increases
- 2. (iii) decreases (iv) increases
- 3. (v) decreases (vi) increases
- 4. (vii) increases (viii) decreases
- 5. (ix) increases (x) decreases

e.

- i. First, the sugar turns brown, then it swells to give steam, and finally, it gets charred.
- ii. Dense white fumes are seen.
- iii. A colourless and odourless gas evolves with brisk effervescence which turns lime water milky.
- iv. On adding a little ammonium hydroxide, a white precipitate of zinc hydroxide is formed which dissolves in excess of ammonium hydroxide to give a clear solution.
- v. The solution becomes green.

ICSE X | CHEMISTRY

Sample Paper – 1 Solution

f.

Cathode	Anode	
(i) Lead metal	Bromine vapours	
(ii) Hydrogen	Chlorine	
(iii) Copper	Oxygen	
(iv) Sodium	Chlorine	
(v) Potassium	Chlorine	

g.

- i. Sodium chloride Ionic bonding
- ii. Carbon tetrachloride Covalent bonding
- iii. Ammonia Polar covalent bonding
- iv. Methane Covalent bonding
- v. Calcium oxide Ionic bonding

h.

- i. Hydrogen chloride gas is a polar covalent compound.
- ii. Ammonia turns moist red litmus blue.
- iii. Concentrated sulphuric acid is the least volatile acid.
- iv. Burning magnesium reacts with nitrogen to form magnesium nitride.
- v. Hydrogen chloride gas is highly or extremely soluble in water.

SECTION II

Answer 2

a.

- i. (1) Silver (2) Copper spoon (3) Silver (4) Pure
- ii. At the cathode: $Ag^+ + e^- \longrightarrow Ag$ At the anode: $Ag - e^- \longrightarrow Ag^+$

b.

i.
$$\frac{10 \times 60}{100} = 6$$
 litres of propane

$$\frac{10 \times 40}{100} = 4 \text{ litres of butane}$$

Now, 1 volume of propane = 3 volumes of CO₂

6 litres of propane =
$$\frac{3}{1} \times 6 = 18$$
 litres of CO_2

2 volumes of butane = 8 volumes of CO_2

4 litres of butane =
$$\frac{8}{2} \times 4 = 16$$
 litres of CO_2

Total volume of $CO_2 = 18 + 16 = 34$ litres

ii. % of N =
$$\frac{28}{80} \times 100 = 35\%$$

% of
$$0 = \frac{48}{80} \times 100 = 60\%$$

Answer 3

a.

- i. Lead sulphide
- ii. Sulphur dioxide
- iii. Liquation
- iv. Calamine ZnCO₃

b.

- i. Minerals from which metals are extracted commercially at a comparatively low cost and with minimum effort are called ores.
- ii. The earthy impurities, including silica and mud, associated with the ore are called gangue.
- iii. A flux is a substance which is added to the charge in a furnace to remove the gangue.

c.

- i. Baeyer's process
- ii. Hall's process
- iii. Hoopes process

Answer 4

a.

i.
$$CH_3COONa + NaOH \xrightarrow{CaO} CH_4 + Na_2CO_3$$

ii.
$$CO+H_2 + H_2 \xrightarrow{200-300^{\circ}C} CH_3OH$$
Water gas

iii.

iv.

b.

i.
$$C_2H_5Cl + KOH(aq.) \longrightarrow C_2H_5OH + KCl$$

ii.
$$C_2H_5Cl + KOH (alc.) \longrightarrow C_2H_4 + KCl + H_2O$$

iii.
$$C_2H_4 + H_2O \longrightarrow C_2H_5OH$$

iv.
$$C_2H_5OH + H_2SO_4(conc.) \xrightarrow{110^{\circ}C} C_2H_5HSO_4 + H_2O$$

 $C_2H_5HSO_4 \xrightarrow{160^{\circ}C} C_2H_4 + H_2SO_4$

c.

i. Compounds with the same molecular formula but different structural formula are called isomers, and the phenomenon is called isomerism.

ii.

2-Methylpropane

Answer 5

a.

i. On adding sodium hydroxide to zinc sulphate drop by drop, a white precipitate is formed which is soluble in excess of sodium hydroxide.

$$ZnSO_4 + 2NaOH \rightarrow Zn (OH)_2 + Na_2SO_4$$

 $Zn(OH)_2 + 2NaOH \rightarrow Na_2ZnO_2 + 2H_2O$
(Soluble salt)

ii. On adding NH₄OH drop by drop to a solution of copper sulphate, a pale blue ppt. appears which dissolves in excess of NH₄OH to give a deep blue or inky blue solution.

$$CuSO_4 + 2NH_4OH \rightarrow Cu(OH)_2 + (NH_4)_2SO_4$$

 $Cu(OH)_2 + (NH_4)_2SO_4 + 2NH_4OH \rightarrow [Cu(NH_3)_4]SO_4 + 4H_2O$

b.

- i. The metal anode continuously dissolves as ions in solution; hence, it needs to be replaced periodically.
- ii. The electrolyte dissociates into ions of the metal which migrate towards the cathode and are deposited as neutral metallic atoms on the cathode (article).
- iii. Low current for a longer time initiates a smooth, firm, uniform and long-lasting deposition.
- iv. AC causes discharge and ionisation to alternate at the cathode, thus giving no effective coating.

Answer 6

(a)

- (i) A lone pair of electrons: A pair of electrons which is not shared with any other atom is known as a lone pair of electrons. It is provided to the other atom for the formation of a coordinate bond.
- (ii) Electron dot diagram of hydronium ion:

$$\overset{\text{H}}{\overset{\text{O}}{:}} + \overset{\text{H}}{\overset{\text{A}}{:}} \longrightarrow \begin{bmatrix} H \overset{\text{O}}{\overset{\text{H}}{:}} & H \end{bmatrix}^{+} \circ r \begin{bmatrix} H \overset{\text{O}}{\overset{\text{H}}{:}} & H \end{bmatrix}^{+}$$

Water

Hydrogen ion

Hydronium ion

ICSE X | CHEMISTRY

Sample Paper – 1 Solution

(b)

- (i) The clement B would have **lower** metallic character than A.
- (ii) The element A would probably have **higher** electron affinity than B.
- (iii) The element A would have **smaller** atomic size than B.

(c)

Conversion	Ionic Equation	Oxidation/Reduction
(i) Chloride ion to chlorine molecule	(i) Cl e- →Cl	(i) Oxidation
	$Cl + Cl \rightarrow Cl_2$	
(ii) Lead (II) ion to lead		
	(ii) Pb ²⁺ + 2e ⁻ → Pb	(ii) Reduction

Answer 7

a.

i.
$$Na_2SO_3 + 2HCl (dil.) \rightarrow 2NaCl + H_2O + SO_2$$

 $Cu + 2H_2SO_4 (conc.) \rightarrow CuSO_4 + 2H_2O + SO_2$

- ii. Sulphurous acid
- iii. Sulphites and bisulphites

b.

- i. Monobasic acid
- ii. Lead nitrate and silver nitrate
- iii. Hydrogen