
CBSE Board Class XII Chemistry Sample paper - 8

Time: 3 Hrs Total Marks: 70

- 1. All questions are compulsory.
- 2. Question nos. 1 to 8 are very short answer questions and carry 1 mark each
- 3. Question nos. **9 to 18** are short answer questions and carry 2 marks each. Use of calculator is not permitted.
- 4. Question nos. **19 to 27** are also short answer questions and carry 3 marks each
- 5. Question nos. **28 to 30** are long answer questions and carry 5 marks each
- 6. Use log tables if necessary, use of calculators is not allowed.
- **Q1**: What is the type of linkage responsible for the formation of primary structure of proteins?
- **Q2**: Give a chemical test to distinguish between benzaldehyde and acetophenone.
- **Q3**: Write the product of the following reaction:

- **Q4**: A solid has a cubic structure in which X atoms are located at the corners of the cube, Y atoms are at the body centre and O atoms are at all the face centres. What is the formula of the compound?
- **Q5**: Explain why amorphous solids are isotropic.
- **Q6**: Identify the reaction order for the reaction having the rate constant $k = 1.3 \times 10^{-5} \text{ Lmol}^{-1}\text{s}^{-1}$
- **Q7**: For a reaction, $A + B \rightarrow Product$; the rate law is given by Rate = $k [A]^{1/2} [B]^{3/2}$. What is the order of the reaction?
- **Q8**: Predict the shape of the compound ClF₃

Q9:If NaCl is doped with 10⁻³ mol% of SrCl₂, what is the concentration of cationic vacancies?

Q10: Calculate the equilibrium constant, K for the reaction at 298 K:

$$3Sn^{4+} + 2Cr \rightarrow 3Sn^{2+} + 2Cr^{3+}$$
; $E^{\theta} = 0.885 \text{ V}$

Q11: Out of sodium chloride and barium chloride which will have a greater coagulation value for As_2S_3 sol? Why?

Q12: Give reasons:-

- (a) True solutions do not exhibit Tyndall effect.
- (b) Enthalpy of chemisorption is more than that of physisorption.

Q13: Give reasons: -

- (a) PH₃ has lower boiling than NH₃. Why?
- (b) H₃PO₂ acts as reducing agent.

0r

Give reasons: -

- (a) Nitrogen exists as diatomic molecule, N_2 , whereas phosphorus exists as a tetraatomic molecule P_4 .
- (b) Noble gases have low heat of vapourisation.

Q14: Complete the following chemical reactions: -

(a) RCHO +
$$H_2 \xrightarrow{Pd}$$
?

(b) OH
$$| \\ CH_3 - CH - CH_3 \xrightarrow{85\% \ H_3PO_4} \\ 440 \ K$$

Q15: Give equations involved in the following reactions: -

- (a) Reimer Tiemann reaction
- (b) Kolbe's reaction

Q16: Convert -

- (a) Propanoic acid to ethanamine
- (b) Aniline to benzoic acid

Q17: Arrange the following in the increasing order of basic strength in gas phase:

 $C_2H_5NH_2$, $(C_2H_5)_2$ NH, $(C_2H_5)_3$ N, and NH₃ Give reason.

- **Q18**:What happens when:
 - (a) White phosphorus is heated with concentrated NaOH solution in an inert atmosphere of CO_2
 - (b) PCl₅ is heated
- **Q19**: The following data were obtained for the reaction:

$$2 \text{ NO (g)} + \text{Br}_2(g) \longrightarrow 2 \text{ NOBr (g)}$$

Experiment	[NO]	[Br ₂]	Initial rate (mol L ⁻¹ min ⁻¹)
Ι	0.10	0.10	1.3 x 10 ⁻⁶
II	0.20	0.10	5.2 x 10 ⁻⁶
III	0.20	0.30	1.56 x 10 ⁻⁵

Determine (a) the order of reaction with respect to NO and Br₂

- (b) the rate law and
- (c) rate constant
- **Q20**: The molar conductivity of 0.025 molL⁻¹ methanoic acid is 46.1Scm² mol⁻¹. Calculate its degree of dissociation and dissociation constant. Given $\lambda^{\circ}_{(H^+)} = 349.6 \text{ S cm}^2 \text{ mol}^{-1}$ and

$$\lambda^{\circ}_{(HCOO^{-})} = 54.6 \text{ S cm}^{2} \text{ mol}^{-1}.$$

Q21:

- (a) Name the method used for refining of
 - i. Nickel
 - ii. Titanium
- (b) The extraction of Au by leaching with NaCN involves both oxidation and reduction. Justify giving equations.

Q 22:

- (a) Out of the following which hydride has the largest bond angle? Why? H_2O , H_2S , H_2Se and H_2Te
- (b) Which oxide of sulphur acts as oxidising as well as reducing agent?
- (c) SO₃ has zero dipole moment. Why?
- **Q23**: Using valence bond theory, explain the geometry and magnetic behaviour of pentacarbonyliron (0).

- **Q24**: Explain the following terms with suitable examples:
 - (a) cationic detergents
 - (b) anionic detergents and
 - (c) non-ionic detergents
- **Q25**: Is $(-CH_2-CH(C_6H_5-)_n$ a homopolymer or a copolymer? Write the name and formula of its monomer/s. Is it an addition polymer or a condensation polymer?
- **Q26:** What happens when D glucose is treated with the following reagents?
 - (a) HI
 - (b) Bromine water
 - (c) HNO_3
- **Q27**: How will you bring the following conversions?
 - (a) Toluene to benzyl alcohol
 - (b) Ethanol to ethyl fluoride
 - (c) Benzene to biphenyl

0r

(a)
$$C_6H_5O^-Na^+ + C_2H_5CI \longrightarrow$$

(b)
$$CH_3CH_2CH = CH_2 + HBr \xrightarrow{Peroxide}$$

(c)
$$CH_3CH = C(CH_3)_2 + HBr \longrightarrow$$

- $\mathbf{Q28}$: 45 g of ethylene glycol ($C_2H_6O_2$) is mixed with 600 g of water. Calculate
 - (a) Freezing point depression
 - (b) The freezing point of the solution (K_f for water = 1.86 K kg mol⁻¹)

 $\mathbf{0r}$

Calculate the osmotic pressure of a solution obtained by mixing 100mL of 3.4 percent solution of urea (mol mass = 60) and 100mL of 1.6 percent solution of cane sugar (mol mass = 342) at 293 K. R = 0.083 L bar mol⁻¹ K⁻¹

Q29:

- (a) Name a member of the lanthanoid series which is well known to exhibit +4 oxidation state.
- (b) Actinoid contraction is greater from element to element than lanthanoid contraction. Why?
- (c) Which is the last element in the series of the actinoids? Write the electronic configuration of this element. Comment on the possible oxidation state of this element.
- (d) Which out of Lu(OH)₃ and La(OH)₃ more basic and why?

 $\mathbf{0r}$

- (a) Why do Zr and Hf exhibit similar properties?
- (b) What is the basic difference between the electronic configuration of transition and inner transition elements?
- (c) What is meant by 'disproportionation'? Give one example.
- **Q30**: An organic compound (A) (molecular formula $C_8H_{16}O_2$) was hydrolysed with dilute sulphuric acid to give a carboxylic acid (B) and an alcohol (C). Oxidation of (C) with chromic acid produced (B). (C) on dehydration gives but 1 –ene. Write equations for the reactions involved.

 $\mathbf{0r}$

- (a) Arrange the following compounds in increasing order of their property as indicated:
 - Benzoic acid, 4 Nitro benzoic acid, 3, 4 Dinitrobenzoic acid,
 - 4 Methoxybenzoic acid (acid strength)
- (b) Give simple chemical tests to distinguish between the following pairs of compounds.
 - i. Propanal and Propanone
 - ii. Benzoic acid and Ethyl benzoate

www.topperlearning.com