Revision Notes

PHYSICS

Light – Reflection and Refraction

Reflection of Light

- Reflection is the phenomenon of bouncing back of light into the same medium on striking the surface of any object.
- Laws of Reflection
 - First law: The incident ray, the normal to the surface at the point of incidence and the reflected ray, all lie in the same plane.
 - Second law: The angle of reflection (r) is always equal to the angle of incidence (i). $\angle i = \angle r$
- The image formed by a plane mirror is always
 - o virtual and erect
 - o of the same size as the object
 - \circ as far behind the mirror as the object is in front of it
 - o laterally inverted
- Spherical mirrors are of two types:

- Convex mirrors or diverging mirrors in which the reflecting surface is curved outwards.
- **Concave mirrors or converging mirrors** in which the reflecting surface is curved inwards.
- Some terms related to spherical mirrors:
 - The **centre of curvature (C)** of a spherical mirror is the centre of the hollow sphere of glass, of which the spherical mirror is a part.
 - The **radius of curvature (R)** of a spherical mirror is the radius of the hollow sphere of glass, of which the spherical mirror is a part.
 - The **pole (P)** of a spherical mirror is the centre of the mirror.
 - The **principal axis** of a spherical mirror is a straight line passing through the centre of curvature C and pole P of the spherical mirror.
 - The **principal focus (F) of a concave mirror** is a point on the principal axis at which the rays of light incident on the mirror, in a direction parallel to the principal axis, actually meet after reflection from the mirror.
 - The **principal focus (F) of a convex mirror** is a point on the principal axis from which the rays of light incident on the mirror, in a direction parallel to the principal axis, appear to diverge after reflection from the mirror.
 - The **focal length (f)** of a mirror is the distance between its pole (P) and principal focus (F).
 - For spherical mirrors of small aperture, R = 2f.

• Sign Conventions for Spherical Mirrors

According to New Cartesian Sign Conventions,

- $\circ~$ All distances are measured from the pole of the mirror.
- The distances measured in the direction of incidence of light are taken as positive and *vice versa*.
- The heights above the principal axis are taken as positive and vice versa.

Rules for tracing images formed by spherical mirrors

Rule 1: A ray which is parallel to the principal axis after reflection passes through the principal focus in case of a concave mirror or appears to diverge from the principal focus in case of a convex mirror.

Concave Mirror

Convex Mirror

Rule 2: A ray passing through the principal focus of a concave mirror or a ray which is directed towards the principal focus of a convex mirror emerges parallel to the principal axis after reflection.

Concave Mirror

Convex Mirror

Rule 3: A ray passing through the centre of curvature of a concave mirror or directed towards the centre of curvature of a convex mirror is reflected back along the same path.

Rule 4: A ray incident obliquely towards the pole of a concave mirror or a convex mirror is reflected obliquely as per the laws of reflection.

- Image formation by a concave mirror
 - Ray Diagrams

Object at infinity

Object beyond C

Object between C and F

Object between F and P

B'

LIGHT – REFLECTION AND REFRACTION PHYSICS

Characteristics of images formed 0

Position of object	Position of image	Size of image	Nature of image
At infinity	At focus F	Highly diminished	Real and inverted
Beyond C	Between F and C	Diminished	Real and inverted
At C	At C	Equal to size of object	Real and inverted
Between C and F	Beyond C	Enlarged	Real and inverted
At F	At infinity	Highly enlarged	Real and inverted
Between F and P	Behind the mirror	Enlarged	Virtual and erect

- Image formation by a convex mirror
 - **Ray Diagrams** 0

Object at infinity

infinity and P

Characteristics of images formed 0

Position of object	Position of	Size of image	Nature of
	image		image
At infinity	At focus F behind	Highly diminished,	Virtual and erect
	the mirror	point sized	
Anywhere between	Between P and F	Diminished	Virtual and erect
infinity and the pole	behind the mirror		
of the mirror			

Mirror Formula

The object distance (u), image distance (v) and focal length (f) of a spherical mirror are related as $\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$

Linear Magnification (m) produced by a spherical mirror is •

size of image $(h_2) = -\frac{\text{image distance (v)}}{1 + 1}$ **m** =

size of object $(h_1)^{-1}$ object distance (u)

m is negative for real images and positive for virtual images.

Refraction of Light

- The phenomenon of change in the path of a beam of light as it passes from one medium to another is • called refraction of light.
- The **cause of refraction** is the change in the speed of light as it goes from one medium to another. •

Laws of Refraction •

- First Law: The incident ray, the refracted ray and the normal to the interface of two media at the point of incidence, all lie in the same plane.
- Second Law: The ratio of the sine of the angle of incidence to the sine of the angle of refraction is constant for a given pair of media.

 $\frac{\sin i}{\sin r} = \operatorname{constant} = {}^{1}n_{2}$

This law is also known as Snell's law.

The constant, written as ${}^{1}n_{2}$ is called the **refractive index** of the second medium (in which the refracted ray lies) with respect to the first medium (in which the incident ray lies).

Absolute refractive index (n) of a medium is given as

speed of light in vacuum **n** = speed of light in the medium v

When a beam of light passes from medium 1 to medium 2, the refractive index of medium 2 with respect to medium 1 is called the **relative refractive index**, represented by ${}^{1}n_{2}$, where

$${}^{1}n_{2} = \frac{n_{2}}{n_{1}} = \frac{c/v_{2}}{c/v_{1}} = \frac{v_{1}}{v_{2}}$$

Similarly, the refractive index of medium 1 with respect to medium 2 is

$${}^{2}n_{1} = \frac{n_{1}}{n_{2}} = \frac{c/v_{1}}{c/v_{2}} = \frac{v_{2}}{v_{1}}$$

$$\Rightarrow \qquad {}^{1}n_{2} \times {}^{2}n_{1} = 1$$
or,
$${}^{1}n_{2} = \frac{1}{{}^{2}n_{1}}$$

- While going from a rarer to a denser medium, the ray of light bends towards the normal. While going from a denser to a rarer medium, the ray of light bends away from the normal.
- **Conditions for no refraction** •
 - When light is incident normally on a boundary.

1

- When the refractive indices of the two media are equal.
- In the case of a rectangular glass slab, a ray of light suffers two refractions, one at the air-glass ٠ interface and the other at the glass-air interface. The emergent ray is parallel to the direction of the incident ray.

- Convex lens or converging lens which is thick at the centre and thin at the edges.
- Concave lens or diverging lens which is thin at the centre and thick at the edges.
- Some terms related to spherical lenses:
 - $\circ~$ The central point of the lens is known as its **optical centre (O)**.
 - Each of the two spherical surfaces of a lens forms a part of a sphere. The centres of these spheres are called centres of curvature of the lens. These are represented as C₁ and C₂.
 - The **principal axis** of a lens is a straight line passing through its two centres of curvature.
 - The **principal focus of a convex lens** is a point on its principal axis to which light rays parallel to the principal axis converge after passing through the lens.
 - The **principal focus of a concave lens** is a point on its principal axis from which light rays, originally parallel to the principal axis appear to diverge after passing through the lens.
 - The focal length (f) of a lens is the distance of the principal focus from the optical centre.
- Sign Conventions for Spherical Lenses

According to New Cartesian Sign Conventions,

- $\circ~$ All distances are measured from the optical centre of the lens.
- The distances measured in the direction of incidence of light are taken as positive and vice versa.
- The heights above the principal axis are taken as positive and vice versa.

• Rules for tracing images formed by spherical lens

Rule 1: A ray which is parallel to the principal axis, after refraction passes through the principal focus on the other side of the lens in case of a convex lens or appears to diverge from the principal focus on the same side of the lens in case of a concave lens.

Convex Lens

Concave Lens

Rule 2: A ray passing through the principal focus of a convex lens or appearing to meet at the principal focus of a concave lens after refraction emerges parallel to the principal axis.

Rule 3: A ray passing through the optical centre of a convex lens or a concave lens emerges without any deviation.

Concave Lens

- Image formation by a convex lens
 - o Ray Diagrams

Object beyond 2F1

Object between F, and 2F,

Object between F, and C

LIGHT – REFLECTION AND REFRACTION PHYSICS

Characteristics of images formed 0

Position of object	Position of image	Size of image	Nature of image
At infinity	At focus F ₂	Highly diminished	Real and inverted
Beyond 2F ₁	Between F_2 and $2F_2$	Diminished	Real and inverted
At 2F ₁	At 2F ₂	Equal to size of object	Real and inverted
Between F_1 and $2F_1$	Beyond 2F ₂	Enlarged	Real and inverted
At focus F ₁	At infinity	Highly enlarged	Real and inverted
Between F ₁ and O	Beyond F_1 on the same side as the object	Enlarged	Virtual and erect

Image formation by a concave lens

Ray Diagrams 0

Object at infinity

Object between infinity and optical centre

Characteristics of images formed 0

Position of object	Position of image	Size of image	Nature of image
At infinity	At focus F ₁	Highly diminished	Virtual and erect
Between infinity and O	Between focus F ₁ and O	Diminished	Virtual and erect

Lens Formula •

Object distance (u), image distance (v) and focal length (f) of a spherical lens are related as $\frac{1}{2} - \frac{1}{2} = \frac{1}{2}$

Linear Magnification (m) produced by a spherical lens is .

```
m = \frac{size \text{ of image } (h_{_2})}{size \text{ of object } (h_{_1})} = \frac{image \text{ distance } (v)}{object \text{ distance } (u)}
```

m is negative for real images and positive for virtual images.

- Power of a lens
 - Power of a lens is the reciprocal of the focal length of the lens. Its S.I. unit is **dioptre (D)**.

P (dioptre) = $\frac{1}{f(metre)}$

- Power of a **convex lens** is **positive** and that of a **concave lens** is **negative**.
- When several thin lenses are placed in contact with one another, the **power of the combination** of lenses is equal to the algebraic sum of the powers of the individual lenses. $P = P_1 + P_2 + P_3 + P_4 + ...$