PLANCESS RANK ACCELERATOR

MางTHEกาลโICE

FOR JEE MAIN \& ADVANCED

Basic Mathematics
$4000{ }^{+}{ }_{\text {questions }}$
with topic wise exercises

2000+ problems of IIT-JEE \& AIEEE exams of last 35 years

4 Levels of
Exercises categorized into JEE Main \& Advanced

7 Types of Questions based on latest JEE pattern

Detailed Solutions

of all questions are available

PlancEssential
Questions recommended for revision

BASIC MATHEMATICS

EXERCISE 1 JEE MAIN/BOARDS

Q. 1 Solve
(i) $\log _{16} 32$
(ii) $\log _{8} 16$
(iii) $\log _{1 / 9}(1 / 9)$
(iv) $\log _{2 / \sqrt{3}}(1728)$
(v) $\log _{2} \cos 45^{\circ}$
(vi) $\log _{2}\left(\log _{2} 4\right)$
(vii) $\log _{3}\left(\tan 30^{\circ}\right)$
Q. 2 Prove the following
(i) $\log _{5} \sqrt{5 \sqrt{5 \sqrt{5}-\infty}}=1$
(ii) $\log _{0.125}(8)=1$
(iii) $\log _{1.5}(0 . \overline{6})=-1$
(iv) $\log _{2.25}(0 . \overline{4})=-1$
(v) $\log _{10}(0 . \overline{9})=0$
Q. 3 Find the no. of digits in
(i) 2^{100}
(ii) 3^{10}
Q. 4 Solve
(i) $\log _{x-1} 3=2$
(ii) $\log _{3}\left(3^{x}-8\right)=2-x$
(iii) $\log _{5-x}\left(x^{2}-2 x+65\right)=2$
(iv) $\log _{3}(x+1)+\log _{3}(x+3)=1$
(v) $x^{2 \log x}=10^{5+\log x}$
(vi) $x^{\frac{\log x+5}{3}}=10^{5+\log x}$
(vii) $x^{\log _{3} x}=9$
Q. $51-\log 5=\frac{1}{3}\left(\log \frac{1}{2}+\log x+\frac{1}{3} \log 5\right)$
Q. 6
$\log x-\frac{1}{2} \log \left(x-\frac{1}{2}\right)=\log \left(x+\frac{1}{2}\right)-\frac{1}{2} \log \left(x+\frac{1}{8}\right)$
Q. $7 x^{\frac{\log _{10} x+7}{4}}=10^{\log x+1}$
Q. $8\left(\frac{\log x}{2}\right)^{\log ^{2} x+\log x^{2}-2}=\log \sqrt{x}$
Q. $9 \sqrt[3]{\log _{2} x}-\log _{2} 8 x+1=0$
Q. $10 \log _{1 / 3} x-3 \sqrt{\log _{1 / 3} x}+2=0$
Q. $11\left(a^{\log _{10} x}\right)^{2}-5 x^{\log _{10} x}+6=0$
Q. 12
$\log _{4}\left(x^{2}-1\right)-\log _{4}(x-1)^{2}-\log _{4}\left(\sqrt{(4-x)^{2}}\right)$
Q. $132 \log _{3} \frac{x-3}{x-7}+1=\log _{3} \frac{x-3}{x-1}$
Q. $14 \log _{x}\left(9 x^{2}\right) \log _{3}^{2} x=4$
Q. $15 \log _{0.5 x} x^{2}+14 \log _{16 x} x^{2}+40 \log _{4 x} \sqrt{x}=0$
Q. $16 \log _{3}\left(\log _{1 / 2}^{2} x-3 \log _{1 / 2} x+5\right)=2$
Q. $17 \log _{3}(x / 4)=\frac{15}{\log _{2} \frac{x}{8}-1}$
Q. $18 \frac{1}{2} \log (5 x-4)+\log \sqrt{x+1}=2+\log 0.18$
Q. $19 \log x^{2}=\log (5 x-4)$
Q. $20 \frac{1}{6} \log _{2}(x-2)-\frac{1}{3}=\log _{1 / 8} \sqrt{3 x-5}$
Q. $21 \frac{\log (\sqrt{x+1}+1)}{\log (\sqrt[3]{x-40})}=30$
Q. $221-\frac{1}{2} \log (2 x-1)=\frac{1}{2} \log (x-9)$
Q. $23 \log \left(3 x^{2}+7\right)-\log (3 x-2)=1$
Q. $24\left(1+\frac{1}{2 x}\right) \log 3+\log 2=\log \left(27-3^{1 / x}\right)$
Q. $25 \frac{1}{2} \log x+3 \log \sqrt{2+x}=\log \sqrt{x(x+2)}+2$
Q. $26 \log _{2}\left(4^{x}+1\right)=x+\log _{2}\left(2^{x+3}-6\right)$
Q. $27 \log _{\sqrt{5}}\left(4^{x}-6\right)-\log _{\sqrt{5}}\left(2^{x}-2\right)=2$
Q. $28 \log \left(3^{x}-2^{4-x}\right)=2+\frac{1}{4} \log 16-\frac{x \log 4}{2}$
Q. $29 \log (\log x)+\log \left(\log x^{4}-3\right)=0$
Q. $30 \log _{2}\left(9^{x}+9\right)=\log _{3} 3^{x}\left(28-2.3^{x}\right)$

EXERCISE 2 JEE MAIN

Q. $1 \frac{1}{\log _{\sqrt{a / b}} a b c}+\frac{1}{\log _{\sqrt{a b}} a b c}+\frac{1}{\log _{\sqrt{a b}} a b c}$ has the value equal to
(A) $1 / 2$
(B) 1
(C) 2
(D) 4
Q. 2 The equation,
$\log _{2}\left(2 x^{2}\right)+\log _{2} x x^{\log (\log x+1)}$
$+\frac{1}{2} \log _{4}^{2} x^{4}+2^{-3 \log _{3 / 2}(\log x)}$ has
(A) exactly one real solution
(B) two real solutions
(C) 3 real solutions
(D) no solution
Q. 3 Number of zeros after decimal before a significant figure in (75) ${ }^{-10}$ is:
(Use $\log _{10} 2=0.301 \& \log _{10} 3=0.477$)
(A) 20
(B) 19
(C) 18
(D) None
Q. 4 If $5 x^{\log _{2} 3}+3^{\log _{2} x}=162$ then logarithm of x to the base 4 has the value equal to
(A) 2
(B) 1
(C) -1
(D) $3 / 2$
Q. $5 x^{\log _{10}^{2}+\log _{10} x^{3}}=\frac{2}{\frac{1}{\sqrt{x+1-1} \sqrt{1+1+1}}}$
where $x_{1}>x_{2}>x_{3}$, then
(A) $x_{1}+x_{3}=2 x_{2}$
(B) $x_{1} \cdot x_{3}=x_{2}^{2}$
(C) $x_{2}=\frac{2 x_{1} x_{2}}{x_{1}+x_{2}}$
(D) $x_{1}^{-1}+x_{1}^{-1}=x_{3}^{-1}$
Q. 6 Let $x=2^{\log 3}$ and $y=y=3^{\log 2}$ where base of the logarithm is 10 , then which one of the following holds good?
(A) $2 x<y$
(B) $2 y<x$
(C) $3 x=2 y$
(D) $y=x$
Q. 7 Number of real solution(s) of the equation $|x-3|^{3 x^{2}-10 x+3}=1$ is-
(A) exactly four
(B) exactly three
(C) exactly two
(D) exactly one
Q. 8 If $(\sqrt{5 \sqrt{2}}-7)^{x}+6(\sqrt{5 \sqrt{2}+7})^{x}=7$, then the value of x can be equal to-
(A) 0
(B) $\log _{(5 \sqrt{2}-7)} 36$
(C) $\frac{-2}{\log _{6}(5 \sqrt{2}+7)}$
(D) $\log _{\sqrt{5 \sqrt{2}-7}} 6$
Q. 9 Consider the following statements

Statement-1: The equation $5^{\log _{5}\left(x^{2}+1\right)}-x^{2}=1$ has two distinct real solutions.
Because.
Statement-2: $a^{\log _{\mathrm{a}} \mathrm{N}}=\mathrm{N}$ when $\mathrm{a}>0, \mathrm{a} \neq 1$ and $\mathrm{N}>0$.
(A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
(B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
(C) Statement- 1 is true, statement- 2 is false
(D) Statement- 1 is false, statement- 2 is true

Q. 10 Column-I

(A) The expression

Column-II

(P) an integer
$x=\log _{2} \log _{9} \sqrt{6+\sqrt{6+\sqrt{6+\ldots \ldots \ldots \infty}}}$
simplifies to
(B) The number
(Q) a prime
$\mathrm{N}=2^{\left(\log _{2} 3 . \log _{3} 4 . \log _{4} 5 \ldots . \log _{99} 100\right)}$
simplifies to
(C) The expression
(R) a natural
$\frac{1}{\log _{5} 3}+\frac{1}{\log _{6} 3}-\frac{1}{\log _{10} 3}$
simplifies to
(D) The number (S) a composite
$N=\sqrt{2+\sqrt{5-\sqrt{6-3 \sqrt{5} \sqrt{14-6 \sqrt{5}}}}}$
simplifies to
Q. 11 If x_{1} and x_{2} are the roots of the equation $\sqrt{2010} x^{\log _{2000} x}=x^{2}$, then find the cyphers at the end of the product ($\mathrm{x}_{1} \mathrm{x}_{2}$)
Q. 12 Let $x=2$ or $x=3$ satisfy the equation, $\log _{4}\left(x^{2}+b x+c\right)=1$. Then find the value of |bc|.

EXERCISE 1 JEE ADVANCED

Q. 1 Let A denotes the value of
$\log _{10}\left(\frac{a b+\sqrt{(a b)^{2}-4(a+b)}}{2}\right)$
$+\log _{10}\left(\frac{a b-\sqrt{(a b)^{2}-4(a+b)}}{2}\right)$ when $a=43$ and $b=57$ and B denotes the value of the expression $\left(2^{\log _{6} 18}\right) \cdot\left(3^{\log _{6} 3}\right)$. Find the value of (A.B).
Q. 2 Simplify:
(a) $\log _{10} \sqrt[4]{729 \sqrt[3]{9^{-1} \cdot 27^{-4 / 3}}}$
(b) $a^{\frac{\log _{b}\left(\log _{b} N\right)}{\log _{b} a}}$
Q. 3 (a) Which is smaller ? 2 or $\left(\log _{\pi} 2+\log _{2} \pi\right)$
(b) Prove that $\log _{3} 5$ and $\log _{2} 7$ are both irrational
Q. 4 Find the square of the sum of the roots of the equation
$\log _{3} x \cdot \log _{4} x \cdot \log _{5} x=\log _{3} x \cdot \log _{4} x+\log _{4} x \cdot$ $\log _{5} x+\log _{5} x \cdot \log _{3} x$.
Q. 5 Find the value of the expression $\frac{2}{\log _{4}(2000)^{6}}+\frac{3}{\log _{3}(2000)^{6}}$
Q. 6 Simplify:
$\frac{81^{\frac{1}{\log _{5} 9}}+3^{\frac{1}{\log _{6_{6}}}}}{409}\left((\sqrt{7})^{\frac{2}{\log _{25}}}-(125)^{\log _{5} 6}\right)$
Q. 7 Simplify:
$5^{\log _{5} 2^{(1)}}+\log _{\sqrt{2}} \frac{4}{\sqrt{7}+\sqrt{3}}+\log _{1 / 2} \frac{1}{10+2 \sqrt{21}}$
Q. 8 Given that $\log _{2} a=s, \log _{4} b=5^{2}$ and $\log _{2}$ (8) $=\frac{2}{5^{3}+1}$. Write $\log _{2} \frac{2}{5^{3}+1}$ as function of 's' $(a, b, c>0) c \neq 1)$.
Q. 9 Prove that $\frac{\log _{2} 24}{\log _{96} 2}-\frac{\log _{2} 192}{\log _{12} 2}=3$
Q. 10 Prove that $a^{x}-b^{y}=0$ wher $x=\sqrt{\log _{a} b}$ and $y=\sqrt{\log _{a} a}, a>0, b>0 \& a, b=1$.
Q. 11 (a) Solve for $x, \frac{\log _{10}(x-3)}{\log _{10}\left(x^{2}-21\right)}=\frac{1}{2}$
(b) $\log (\log x)+\log \left(\log x^{3}-2\right)=0$; where base of \log is 10 everywhere
(c) $\log _{x} 2 \cdot \log _{2 x} 2=\log _{4 x} 2$
(d) $5^{\log x}+5 x^{\log 5}=3(a>0)$; where base of \log is a
Q. 12 Solve the system of equations:
$\log _{a} x \log _{a}(x y z)=48$
$\log _{a} y \log _{a}(x y z)=12$
$\log _{a} z \log _{a}(x y z)=84$
Q. 13 Let 'L' denotes the antilog of 0.4 to the base 1024.
and ' M ' denotes the nuber of digits in 6^{10} (Given $\log _{10} 2=0.3010, \log _{10} 3=0.4771$) and ' N ' denotes the number of positive integers which have the characteristic 2 , when base of the logarithm is 6 . Find the value of LMN.
Q. 14 Prove the identity.
$\log _{a} N . \log _{b} N+\log _{b} N . \log _{c} N+\log N . \log _{a}$
$N=\frac{\log _{a} \mathrm{Nlog}_{\mathrm{b}} N \log _{\mathrm{c}} \mathrm{N}}{\log _{\mathrm{abc}} \mathrm{N}}$
Q. 15 If $x, y>0, \log _{y} x+\log _{x} y=\frac{10}{3}$ and $x y=$ 144, then $\frac{x+y}{2}=\sqrt{N}$ where N is a natural number, find the vaue of N .
Q. 16 If $\log _{10} 2=0.0310, \log _{10} 3=0.4771$. Find the number of integers in:
(a) 5^{200}
(b) 6^{15}
(c) the number of zeros after the decimal in 3^{-100}.
Q. $17 \log _{5} 120+(x-3)-2 \log _{5}\left(1-5^{x-2}\right)$ $=-\log _{5}\left(2-5^{x-4}\right)$
Q. $18 \log _{x+1}\left(x^{2}+x-6\right)^{2}=4$
$\mathrm{Q} .19 \mathrm{x}+\log _{10}\left(1+2^{\mathrm{x}}\right)=\mathrm{x} \log _{10} 5+\log _{10} 6$
Q. 20 If ' x ' and ' y ' are real numbers such that, $\log (2 y-3 x)=\log x+\log y$, find $\frac{x}{y}$.
Q. 21 If $a=\log _{12} 18 \& b=\log _{24} 54$ then find the value of $a b+5(a-b)$
Q. 22 Find the value of $\log _{3} x$ if following is true $\sqrt{\log _{9}\left(9 x^{3}\right) \log _{3}(3 x)}=\log _{3} x^{3}$
Q. 23 Positive numbers x, y and z satisfy $x y z=$ 10^{11} and $\left(\log _{10} x\right)\left(\log _{10} y z\right)+\left(\log _{10} y\right)\left(\log _{10} z\right)$ $=468$. Find the value of $\left(\log _{10} x\right)^{2}+\left(\log _{10} y\right)^{2}+$ $\left(\log _{10} z\right)^{2}$.
Q. 24 Find the sum of all solutions of the equation
$3^{\left(\log _{9} x\right)^{2-2} 2^{\log _{a} x+5}=3 \sqrt{3}} 3^{\left(\log _{9} x\right)^{2-2} 2^{\log _{a} x+5}}=3 \sqrt{3}$
Q. 25 Let a, b, c, d are positive integers such that $\log _{a} b=3 / 2$ and $\log _{c} d=5 / 4$. If $(a-c)=$ 9 , find the value of $(b-d)$.
Q. 26 Find the product of the positive roots of the equation $\sqrt{(2008)}(x)^{\log _{2008} x}=x^{2}$
Q. 27 Find x satisfying the equation
$\log ^{2}\left(1+\frac{4}{x}\right)+\log ^{2}\left(1-\frac{4}{x+4}\right)=2 \log ^{2}\left(\frac{2}{x-1}-1\right)$
Q. 28 Solve: $\log _{3}(\sqrt{x}+|\sqrt{x}-1|)$
$=\log _{9}(4 \sqrt{x}-3+4|\sqrt{x}-1|)$
Q. 29 Prove that
$2^{\left(\sqrt{\log _{a} \sqrt[4]{a b}+\log _{b} \sqrt[4]{a b}}-\sqrt{\log _{a} \sqrt{4 \frac{b}{a}}+\log \sqrt{\frac{a}{b}}}\right) \sqrt{\log _{a}}}$
$=\left[\begin{array}{ll}2 & \text { if } b \geq a>1 \\ 2^{\log _{a} b} & \text { if } 1<b<a\end{array}\right.$
Q. 30 Find the value of x satisfying the equation
$\sqrt{\left[\log _{3}(3 x)^{1 / 3}+\log _{x}(3 x)^{1 / 3}\right] \log _{3} x^{3}}$
$+\sqrt{\left[\log _{3}\left(\sqrt{\frac{x}{3}}\right)^{1 / 3}+\log _{x}\left(\frac{3}{x}\right)^{1 / 3}\right] \log _{3} x^{3}=2}$

EXERCISE 2 JEE ADVANCED

Q. 1 Number of ordered pair(s) satisfying simultaneously, the system of equations, $2^{\sqrt{x}+\sqrt{y}}=256 \& \log _{10} \sqrt{x y}-\log _{10} 1.5=1$, is:
(A) zero
(B) exactly one
(C) exactly two
(D) more than two
Q. 2 Let $A B C$ be a triangle right angled at C. The value of $\frac{\log _{b+c} a+\log _{c-c} a}{\log _{b+c} a \cdot \log _{c-b} a}$
($b+c \neq, c-b \neq 1$) equals
(A) 1
(B) 2
(C) 3
(D) $1 / 2$
Q. 3 Let B, C, P and L be positive real number such that $\log (B \cdot L)+\log (B \cdot P)=2 ;$ $\log (P \cdot L)+\log (P \cdot C)=3 ; \log (C \cdot B)+\log (C$ $\cdot L)=4$. The value of the product (BCPL) equals (base of the log is 10)
(A) 10^{2}
(B) 10^{3}
(C) 10^{4}
(D) 10^{9}
Q. 4 If 4 the
$\frac{\log _{12}\left(\log _{8}\left(\log _{4} x\right)\right)}{\log _{5}\left(\log _{4}\left(\log _{y}\left(\log _{2} x\right)\right)\right)}=0$ has a solution for ' x ' when $c<y<b, y \neq a$, where ' b ' is as large as possible and ' c ' is an small as possible, then the value of $(a+b+c)$ is equal to
(A) 18
(B) 19
(C) 20
(D) 21
Q. 5 The expression, $\log _{p} \log _{p} \underbrace{\sqrt{p \sqrt{p \sqrt{p^{p} \sqrt{P}}}}}_{n \text { radical sign }}$
where $p \geq 2, p \in N$, when simplified is-
(A) independent of p, but dependent on n
(B) independent of n, but dependent of p
(C) dependent on both p \& n
(D) negative
Q. 6 The number $N=\frac{1+2 \log _{3} 2}{\left(1+\log _{3} 2\right)^{2}}+\log _{6}^{2} 2$
when simplified reduces to-
(A) a prime number
(B) an irrational number
(C) a real number is less than $\log _{3} \pi$
(D) a real which is greater than $\log _{7} 6$
Q. 7 Solution set of the inequality
$\left(\log _{2} x\right)^{4}-\left(\log _{12} \frac{x^{2}}{8}\right)^{2}+9 \log _{2}\left(\frac{32}{x^{2}}\right)<4\left(\log _{12} x\right)^{2}$
is $(a, b) \cup(c, d)$ then the correct statement is
(A) $a=2 b$ and $d=2 c$
(B) $b=2 a$ and $d=2 c$
(C) $\log _{e} d=\log _{b} a$
(D) there are 4 integers in (c, d)
Q. 8 The value of x satisfying the equation $2^{2 x}-8 \cdot 2^{x}=-12$, is
(A) $1+\frac{\log 3}{\log 2}$
(B) $\frac{1}{2} \log 6$
(C) $1+\log \frac{3}{2}$
(D) 1
Q. 9 Statement-1: $\sqrt{\log _{x} \cos (2 \pi x)}$ is a meaningful quantity only if $x \in(0,1 / 4) \cup(3 / 4$, 1).

Because
Statement-2: If the number $\mathrm{N}>0$ and the base of the logarithm b (greater than zero not equal to 1) both lie on the same side of unity then $\log _{b} N>0$ and if they lie on different side of unit then $\log _{b} N<0$.
(A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
(B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
(C) Statement- 1 is true, statement- 2 is false
(D) Statement-1 is false, statement- 2 is true

Q. 10 Statement-1:

$\log _{2}(2 \sqrt{17-2 x})=1-\log _{2}(x-1)$ has a solution.
because
Statement-2: Change of base in logarithms is possible.
Q. 11 Solution set of the inequality $3^{x}(0.333 \ldots . . .)^{x-3} \leq(1 / 27)^{x}$ is:
(A) $[3 / 2,5]$
(B) (B) $(-\infty, 3 / 2]$
(C) $(2, \infty)$
(D) None of these
Q. 12 Solution set of the inequality
(A) $(-1, \infty)$
(B) $(0, \infty)$
(C) $(2, \infty)$
(D) None of these
Q. 13 Solution set of the inequality
$\left(\frac{1}{5}\right)^{\frac{2 x+1}{1-x}}>\left(\frac{1}{5}\right)^{-1}$ is-
(A) $(-\infty,-2) \cup(1, \infty)$
(B) $(1,4)$
(C) $(-\infty, 1) \cup(2, \infty)$
(D) None of these

Paragraph for Question Nos. 14 - 16
Equations of the form (i) $f\left(\log _{a} x\right)=0, \quad a$ $>0, a \neq 1$ and (ii) $g\left(\log _{x} A\right)=0, A>0$, then Eq. (i) is equivalent to $f(t)=0$, where $t=\log _{a} x$. If
\qquad . t_{k} are the roots of $f(t)=0$, then $\log _{a} x=t, \log _{a} x=t_{2}, \ldots \ldots, x=t_{k}$ and eq. (ii) is equivalent to $f(y)=0$, where $y \log _{x} A$. If y_{f}, y_{2}, y_{3}, \ldots, y_{k} are the root of $f(y)=0$, then $\log _{x} A=$ $y_{1}, \log _{x}, A=y_{2}$, \qquad .,
$\log _{x} A=y k$.
On the basis of above information, answer the following questions.
Q. 14 The number of solution of the equation $\log _{x}^{3} 10-6 \log _{x}^{2} 10+11 \log _{x} 10-6=0$ is:
(A) 0
(B) 1
(C) 2
(D) 3
Q. 15 The set of all x satisfying the equation $x^{\log _{2} x^{2}+\log _{2} x^{2}-10}=\frac{1}{x^{2}}$ is-
(A) $\{1,9\}$
(B) $\left\{9, \frac{1}{81}\right\}$
Q. 18

Column-I

Column-II

(A) The value of x for which the radical product
$\sqrt{3 \sqrt{x} \sqrt{7 x+\sqrt{4 x-1}}} \sqrt{2 x+\sqrt{4 x-1}} \sqrt{3 \sqrt{x}+\sqrt{7 x+\sqrt{4 x-1}}}$ is equal to 13 , is not greater than
(B) Let $\mathrm{P}(\mathrm{x})=\mathrm{x}^{7}-3 \mathrm{x}^{5}+\mathrm{x}^{3}-7 \mathrm{x}^{2}+5$ and $\mathrm{Q}(\mathrm{x})=\mathrm{x}-2$.
(Q) 7

The remainder of $\frac{P(x)}{Q(x)}$ is not smaller than
(C) Given a right triangle with side of length a, b and c
(R) 10 and area equal to $a^{2}+b^{2}-c^{2}$. The ratio of the larger to the smaller leg of the triangle is
(D) If a, b and $c \in N$ such $(\sqrt[3]{4}+\sqrt{2}-2)(a \sqrt[3]{4}+b \sqrt[3]{2}+c)=20$

Then the value of $(a+b-c)$, is not equal to

- PlancEssential Questions • RECOMMENDED DURING REVISION

EXERCISE 1 JEE MAIN/BOARDS
$\begin{array}{llllll}\text { Q. } 2 & \text { Q. } 3 & \text { Q. } 15 & \text { Q. } 25 & \mathrm{Q} .26 & \mathrm{Q} .30\end{array}$
EXERCISE 2 JEE MAIN
$\begin{array}{llll}\mathrm{Q} .3 & \mathrm{Q} .5 & \mathrm{Q} .9 & \mathrm{Q} .10\end{array}$
EXERCISE 1 JEE ADVANCED
$\begin{array}{llllll}\text { Q. } 6 & \text { Q. } 12 & \text { Q. } 14 & \text { Q. } 16 & \mathrm{Q} .23 & \mathrm{Q} .30\end{array}$
EXERCISE 2 JEE ADVANCED
$\begin{array}{llllll}\mathrm{Q} .4 & \mathrm{Q} .6 & \mathrm{Q} .11 & \mathrm{Q} .15 & \mathrm{Q} .17 & \mathrm{Q} .18\end{array}$

ANSWER KEY

EXERCISE 1 JEE MAIN/BOARDS

Q. 1 (i) $\frac{5}{4}$
$\begin{array}{ll}\text { (ii) } \frac{4}{3} & \text { (iii) } 2\end{array}$
(iv) 6
(v) $-\frac{1}{2}$
(vi) 1 (vii) $-\frac{1}{2}$
Q. 3 (i) 31
(ii) 5
Q. 4 (i) $\sqrt{3}$
(ii) 2 (iii) -5
(iv) 0
(v) $10^{\frac{\sqrt{3}+1}{2}}, 10^{\frac{1-\sqrt{3}}{2}}$ (vi) $\frac{1}{10^{5}}, 1000$
(vii) $\sqrt[3]{2}, \sqrt[3]{2}$
Q. $5 \quad \frac{2^{4}}{5^{1 / x}}$
Q. $6 \quad 1$
Q. $7 \quad 10^{-4}, 10^{1}$
Q. $8 \quad 10^{-3}, 10,10^{2}$
Q. $9 \quad 2,16$
Q. $11 \quad 2^{\log _{a} b, 3 \log _{a} b}$
Q. $13-5$
Q. $15 \quad 2^{\left(-1+\sqrt{\frac{\sqrt{7}}{5}}\right)}, 2^{\left(-1-\sqrt{\frac{17}{5}}\right)}$
Q. $10 \quad 1 / 3,(1 / 3)^{4}$
Q. $12 \quad 3+\sqrt{6}$
Q.14. 3, 1/9
Q. 16 1/16, 2
Q. $172^{7}, 2^{-1}$
Q. 18 8, $-\frac{41}{5}$
Q. 19 4, 1
Q. 203
Q. 2148
Q. $22 \quad 13$
Q. 23 1, 9
Q. $24 \frac{1}{4}, \frac{1}{2}$
Q. 2598
Q. 260
Q. 272
Q. 283
Q. $29 \quad(10)^{-1 / 4},(10)$
Q. 30 (-1), 2

EXERCISE 2 JEE MAIN

Q. 1	B	Q .2	D	Q .3	C	Q .4	D	Q .5	B	Q .6
Q. 7	B	Q .8	$\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}$		Q .9	B				
Q. 10	(A-P), $(\mathrm{B}-\mathrm{P}, \mathrm{R}, \mathrm{S}) ;(\mathrm{C}-\mathrm{P}, \mathrm{R}) ;(\mathrm{D}-\mathrm{P}, \mathrm{Q}, \mathrm{R})$	Q .11	2	Q .12	50					

EXERCISE 1 JEE ADVANCED

Q. $1 \quad 12$
Q. 3 (a) 2
Q. 5 1/6
Q. 76
Q. 11 (a) 5 (b) 10 (c) $2^{ \pm \sqrt{2}}$
Q. 11 (a) 5 (b) 10 (c) $2^{ \pm \sqrt{2}}$ (d) $2^{-\log x}$, where base of \log is 5
Q. $12\left(a^{4}, a, a^{7}\right)\left(a^{-4}, a^{-1}, a^{-7}\right)$
Q. 15507
Q. 16 (a) 140 (b) 12 (c) 47
Q. 181
Q. 20 4/9
Q. $22 \frac{5+3 \sqrt{5}}{10}$
Q. 242196
Q. $26(2008)^{2}$
Q. $28 \quad[0,1] \cup\{4\}$
Q. 1323040
Q. $17-0.410$
Q. 19 1
Q. 21 1
Q. 235625
Q. 2593
Q. $27 \sqrt{2}, \sqrt{6}$
Q. $30 \quad[1 / 3,3]-\{1\}$
Q. 2 (a) -1 (b) $\log _{b} N$
Q. $4 \quad(61)^{2}$
Q. $6 \quad 1$
Q. $8 \quad 2 s+10 s^{2}-3\left(s^{3}+1\right)$

EXERCISE 2 JEE ADVANCED

Q. 1	C	Q. 2	B	Q. 3	B	Q. 4	B	Q. 5	A, D	Q. 6	C, D
Q. 7	B, C	Q. 8	A, D	Q. 9	D	Q. 10	B	Q. 11	D	Q. 12	D
Q. 13	B	Q. 14	D	Q. 15	D	Q. 16	A	Q. 17	1		
Q. 18	(A-Q, R, S); (B-P, Q, R, S); (C-P); (D-R)										

SOLUTIONS

EXERCISE - 1 JEE MAIN

Sol. 1 (i) $\log _{16} 32=\log _{2^{4}} 2^{5}$
we know $\log _{x^{n}} y^{m}=\frac{m}{n} \log _{x} y$
so $\Rightarrow \log _{2^{4}} 2^{5}=\frac{5}{4} \log _{2} 2=\frac{5}{4}$
(ii) $\log _{8} 16$
$=\log _{2^{3}} 2^{4}=\frac{4}{3} \log _{2} 2=\frac{4}{3}(1)=\frac{4}{3}$
(iii) $\log _{1 / 3}(1 / 9)=\log _{1 / 3}(1 / 3)^{2}$
$=2 \log _{1 / 3}(1 / 3)=2 .(1)=2$
(iv) $\log _{2 \sqrt{3}}(1728)$
$=\log _{2 \sqrt{3}}(2 \sqrt{3})^{6}=6 \log _{2 \sqrt{3}} 2 \sqrt{3}=6(1)=6$
(v) $\log _{2} \cos 45^{\circ}$
$=\log _{2} \frac{1}{\sqrt{2}}=\log _{2}(2)^{-\frac{1}{2}}=-\frac{1}{2} \log _{2} 2=-\frac{1}{2}$

Sol. 3 We have to find out no. of digits in
(i) $2^{100}=x$ (assume)
$\Rightarrow \log _{10} x=\log _{10} 2^{100}=100 \log _{10} 2$
$=100(0.3010)=30103$
$\Rightarrow x=10 . .^{30103}=10^{30}(10)^{0.103}$
total no. of digit $=30+1=31$
(ii) $x=3^{10}$
$\Rightarrow \log _{10} x=\log _{10} 3^{10}=10 \log _{10} 3$
$=10(0.47712)=4.7712$
$\Rightarrow x=10^{4.7712}=10^{4} 10^{0.7712}$
total no. of digits $=4+1=5$

Sol. $4 \log _{x-1} 3=2(x \neq 1,2)$
$\frac{1}{2} \log _{x-1} 3=1 \Rightarrow \log _{x-1} 3^{1 / 2}=1$
$3^{1 / 2}=x-1$
$\Rightarrow x=1+\sqrt{3}$
(ii) $\log _{3}\left(3^{x}-8\right)=2-x$
$\Rightarrow\left(3^{x}-8\right)=(3)^{2-x}=3^{2} 3^{-x}=93^{-x}$
$\Rightarrow 3^{x}-93^{-x}=8$
assume $3^{x}=y$
$\Rightarrow y-\frac{9}{y}=8$
$\Rightarrow y^{2}-9=8 y$
$\Rightarrow y^{2}-8 y-9=0$
$\Rightarrow \mathrm{y}=\frac{8 \pm \sqrt{8^{2}+4(1)(9)}}{2(1)}$
$\Rightarrow y=\frac{8 \pm \sqrt{64+36}}{2}=\frac{8 \pm \sqrt{100}}{2}$
$\Rightarrow y=4 \pm 5=9,-1$
so $3^{x}=9 \Rightarrow 3^{x}=3^{2} \Rightarrow x=2$
$3^{x}=-1 \Rightarrow$ no solution
$x=2$
(iii) $\log _{5-x}\left(x^{2}-2 x+65\right)=2$
$\Rightarrow x^{2}-2 x+65=(5-x)^{2}=x^{2}+5^{2}-2(5) x$
$-2 x+65=25-10 x$
$10 x-2 x=25-65=-40$
$8 x=-40$
$\Rightarrow x=-\frac{40}{8}=-5$

$$
\begin{aligned}
& \text { (iv) } \log _{3}(x+1)+\log _{3}(x+3)=1 \\
& \Rightarrow \log _{3}[(x+1) \cdot(x+3)]=1 \\
& (x+1)(x+3)=(3)^{2} \\
& x^{2}+x+3 x+3(1)=3 \\
& x^{2}+4 x=0 \\
& x(x+4)=0 \\
& \Rightarrow x=0,-4
\end{aligned}
$$

but at $x=-4$ equation is

it can't be -ve so $x \neq-4 \Rightarrow x=0$
(v) $x^{2 \log x}=10 x^{2}$
take logarithms is both sides
$\log _{10}\left(x^{2} \log x\right)=\log _{10} 10 x^{2}$
$2 \log _{10} x\left(\log _{10} x\right)=\log _{10} 10+\log _{10} x^{2}$
$2 \log _{10} x\left(\log _{10} x\right)=1+2 \log _{10} x$
assume $\log _{10} \mathrm{x}=\mathrm{y} \ldots$
$\Rightarrow 2 y(y)=1+2 y$
$\Rightarrow 2 y^{2}=1+2 y$
$\Rightarrow 2 \mathrm{y}^{2}-2 \mathrm{y}-1=0$
$\Rightarrow y=\frac{2 \pm \sqrt{2^{2}-4(2)(-1)}}{2(2)}$
$y=\frac{2 \pm \sqrt{4+8}}{4}=\frac{2 \pm 2 \sqrt{3}}{4}=\frac{1 \pm \sqrt{3}}{2}$
so from equation (i)
$\log _{10} x=\frac{1 \pm \sqrt{3}}{2}$
$\Rightarrow x=10^{\frac{(1+\sqrt{3})}{2}}$ and $10^{\frac{(1-\sqrt{3})}{2}}$
(vi) $x^{\log \frac{x+5}{3}}=10^{5+\log x}$
take logarithm (base 10) on both side
$\log .\left[x^{\frac{\log x+5}{3}}\right]=\log _{10} 10^{5+\log x}$
$\Rightarrow\left(\frac{\log x+5}{3}\right) \log _{10} x=(5+\log x) \log _{10} 10$
$\Rightarrow\left(\frac{5+\log x}{3}\right) \log _{10} x=(5+\log x)_{,}(1)$
$\Rightarrow \log _{10} x=1(3)=3$
$\Rightarrow x=10^{3}=1000$
$2^{\text {nd }}$ solution $\Rightarrow 5+\log x=0$
$\Rightarrow \log _{10} x=-5$
$\Rightarrow x=10^{-5}$
(vii) $x^{\log _{3} x}=9$
take logarithm (base 3) in both side
$\log _{3}\left[x^{\log _{3}^{x}}\right]=\log _{3} 9=\log _{3} 3^{2}=2 \log _{3} 3$
$\left(\log _{3} x\right)^{2}=2$
$\Rightarrow\left|\log _{3} x\right|=2^{1 / 2} \Rightarrow \log _{3} x= \pm \sqrt{2}$
$\Rightarrow x=3^{\sqrt{2}}, 3^{-\sqrt{2}}$
Sol. $51-\log 5=\frac{1}{3}\left(\log \frac{1}{2}+\log x+\frac{1}{3} \log 5\right)$
$3(1-\log 5)=\log \frac{1}{2}+\log x+\frac{1}{3} \log 5$
$3-3 \log 5=\log \frac{1}{2}+\log 5^{1 / 3}+\log x$
$\Rightarrow 3=\log 5^{3}+\log \frac{1}{2}+\log 5^{1 / 3}+\log x$
$\Rightarrow 3=\log \left[5^{3} \times \frac{1}{2} \times 5^{1 / 3}\right]+\log x$

$$
\Rightarrow \log x=3-\log \left[5^{3+\frac{1}{3}} \times\left(\frac{1}{2}\right)\right]
$$

$$
\log x=\log _{10} 10^{3}-\log \left(5^{10 / 3} \times 2^{-1}\right)
$$

$$
=\log \left(\frac{10^{3}}{5^{10 / 3} 2^{-1}}\right)=\log _{10} \frac{5^{3} \times 2^{3}}{5^{10 / 3} \times 2^{-1}}
$$

$$
=\log _{10}\left[5^{\frac{9-10}{3}} 2^{3+1}\right]=\log _{10}\left[5^{-1 / 3} 2^{4}\right]
$$

$\log x=\log _{10} \frac{2^{4}}{5^{1 / 3}} \Rightarrow x=\frac{2^{4}}{5^{1 / 3}}$

Sol. 6

$\log x-\frac{1}{2} \log \left(x-\frac{1}{2}\right)=\log \left(x+\frac{1}{2}\right)-\frac{1}{2} \log \left(x+\frac{1}{8}\right)$
$2 \log x-\log \left(x-\frac{1}{2}\right)=2 \log \left(x+\frac{1}{2}\right)-\log \left(x+\frac{1}{8}\right)$
$\log x^{2}-\log \left(x-\frac{1}{2}\right)=\log \left(x+\frac{1}{2}\right)^{2}-\log \left(x+\frac{1}{8}\right)$
$\Rightarrow \log \left(\frac{x^{2}}{x-\frac{1}{2}}\right)=\log \left[\frac{\left(x+\frac{1}{2}\right)^{2}}{\left(x+\frac{1}{8}\right)}\right]$
$\Rightarrow \log \left(\frac{x^{2}}{x-\frac{1}{2}}\right)-\log \left[\frac{\left(x+\frac{1}{2}\right)^{2}}{\left(x+\frac{1}{8}\right)}\right]=0$
$\Rightarrow \log \left[\frac{x^{2}}{\left(x-\frac{1}{2}\right)^{2}} \times \frac{x+\frac{1}{8}}{\left(x+\frac{1}{2}\right)^{2}}\right]=0$
$\Rightarrow\left(\frac{x^{2}}{x-\frac{1}{2}}\right)\left(\frac{x+\frac{1}{8}}{\left(x+\frac{1}{2}\right)^{2}}\right)=1$
$\Rightarrow \mathrm{x}=4 \mathrm{x}^{2}-2 \mathrm{x}-1$
$\Rightarrow 4 \mathrm{x}^{2}-3 \mathrm{x}-1=0$
$\Rightarrow \mathrm{x}=\frac{+3 \pm \sqrt{(3)^{2}-4(4)(-1)}}{2(4)}$
$\Rightarrow x=\frac{+3 \pm \sqrt{9+16}}{8}$
$\Rightarrow x=\frac{+3 \pm \sqrt{25}}{8}=\frac{3 \pm 5}{8}$
$\Rightarrow x=\frac{3-5}{8}$ or $\frac{3+5}{8}$
$x=\frac{-2}{8}$ or $\frac{8}{8}$
$x=-\frac{1}{4}$ or 1
at $x=-\frac{1}{4}$ equation
$\Rightarrow \frac{x^{2}\left(x+\frac{1}{8}\right)}{\left(x^{2}-\frac{1}{4}\right)\left(x+\frac{1}{2}\right)}=1$
$x^{2}\left(x+\frac{1}{8}\right)=\left(x^{2}-\frac{1}{4}\right)\left(x+\frac{1}{2}\right)$
$\Rightarrow x^{3}+\frac{x}{8}=x^{3}+\frac{x^{2}}{2}-\frac{x}{4}-\frac{1}{4}\left(\frac{1}{2}\right)$
$\Rightarrow \frac{x}{8}=\frac{x^{2}}{2}-\frac{x}{4}-\frac{1}{8}$

$$
\underbrace{\log \left(-\frac{1}{4}\right)}_{\downarrow}=\frac{1}{2} \log \left(-\frac{1}{4}-\frac{1}{2}\right)
$$

it is not possible
so $\mathrm{x} \neq-\frac{1}{4} \quad \Rightarrow \mathrm{x}=1$

Sol. $7 x^{\frac{\log _{10} x+7}{4}}=10^{\log x+1}$
take logarithm on both side
$\log \left(x^{\frac{\log _{10} x+7}{4}}\right)=\log 10^{\log x+1}$
$\Rightarrow\left(\frac{\log _{10} x+7}{4}\right)\left(\log _{10} x\right)=(\log x+1) \log _{10} 10$
\Rightarrow assume $\log _{10} x=y$
$\Rightarrow\left(\frac{y+7}{4}\right)(y)=y+1$
$\Rightarrow y^{2}+7 y=4(y+1)=4 y+4$
$\Rightarrow y^{2}+7 y-4 y-4=0$
$\Rightarrow y^{2}+3 y-4=0$
$\Rightarrow(y+4)(y-1)=0$
$\Rightarrow y=-4$ and +1
$\Rightarrow \log _{10} x=-4$ or 1
$x=10^{-4}$ or 10
Sol. $8\left(\frac{\log x}{2}\right)^{\log ^{2} x+\log x^{2}-2}=\log \sqrt{x}$
$\Rightarrow\left(\log x^{1 / 2}\right)^{\log ^{2} x+\log x^{2}-2}=\log x^{1 / 2}$
$\Rightarrow \log ^{2} x+\log x^{2}-2=1$ or $\log x^{1 / 2}=1$
$\Rightarrow \frac{1}{2} \log x=1$
$\Rightarrow \log ^{2} x+2 \log x-2=1 ; \log _{10} x=2 \Rightarrow x=10^{2}$
assume $\log x=y$
$\Rightarrow y^{2}+2 y-2=1$
$\Rightarrow y^{2}+2 y-2-1=0$
$\Rightarrow(y+3)(y-1)=0$
$y=-3 \operatorname{or} y=1$
$\log _{10} x=-3 \operatorname{orlog}_{10} x=1$
$\Rightarrow x=10^{-3}$ or 10^{1}
$\Rightarrow x=10^{-3}, 10,10^{2}$
Sol. $93 \sqrt{\log _{2} x}-\log _{2} 8 x+1=0$
$3 \sqrt{\log _{2} x}=\log _{2} 2^{3} x-1=\log _{2} 2^{3}+\log x-1$
$3 \sqrt{\log _{2} x}=2+\log _{2} x$
assume $\log _{2} x=y$
$3 \sqrt{y}=2+y$
square on both sides
$(3 \sqrt{y})^{2}=(2+y)^{2}$
$9 y=2^{2}+y^{2}+2(2)(y)$
$9 y=4+y^{2}+4 y$
$y^{2}-5 y+4=0$
$(y-4)(y-1)=0$
$\Rightarrow y=4$ or $y=1$
$\log _{2} x=4$ or $\log _{2} x=1$
$\Rightarrow x=2^{4}$ or $x=2^{1}$
$\Rightarrow x=16$ or 2
Sol. $10 \log _{1 / 3} x-3 \sqrt{\log _{1 / 3} x}+2=0$
$\log _{1 / 3} x+2=3 \sqrt{\log _{1 / 3} x}$
assume $\log _{1 / 3} x=y$
$\Rightarrow y+2=3 \sqrt{y}$
$\Rightarrow y=4$ or $y=1$ [Refer above solution]
$\log _{1 / 3} x=4$ or $\log _{1 / 3} x=1$
$\Rightarrow x=\left(\frac{1}{3}\right)^{4}$ or $x=\left(\frac{1}{3}\right)^{1}$
$\Rightarrow x=\frac{1}{81}$ or $\frac{1}{3}$

Sol. $11\left(a^{\log _{b} x}\right)^{2}-5 x^{\log _{b} a}+6=0$
Assume $\mathrm{x}=\mathrm{b}^{\mathrm{y}}$
$\Rightarrow\left(a^{y}\right)^{2}-5\left(a^{\log _{b} x}\right)+6=0$
$\Rightarrow a^{2 y}-5 a^{y}+6=0$
$\Rightarrow\left(a^{y}-3\right)\left(a^{y}-2\right)=0$
$\Rightarrow a^{y}=2,3$
$y=\log _{a} 2, \log _{a} 3=\log _{b} x$
$\therefore x=2^{\log \mathrm{b} / \log \mathrm{a}}, 3^{\log \mathrm{b} / \log \mathrm{a}}$

Sol. $12 \log _{4}\left(x^{2}-1\right)-\log _{4}(x-1)^{2}=\log _{4}\left(\sqrt{(4-x)^{2}}\right)$
$\log _{4}\left(\frac{x^{2}-1}{(x-1)^{2}}\right)=\log _{4}\left(\sqrt{(4-x)^{2}}\right)$
$\frac{x^{2}-1}{(x-1)^{2}}=\sqrt{(4-x)^{2}}$
$\Rightarrow \frac{(x-1)(x+1)}{(x-1)^{2}}=\sqrt{(4-x)^{2}} \quad x \neq-1$,
$\Rightarrow \frac{x+1}{(x-1)}=\sqrt{(4-x)^{2}} \quad 4-x \neq 0$
$\Rightarrow \frac{x+1}{(x-1)}=|4-x|= \pm(4-x)$
(A) $|4-x| \Rightarrow 4-x \geq 0 \Rightarrow x \leq 4$
$\frac{x+1}{x-1}=4-x$
$(x+1)=(4-x)(x-1)$
$x+1=4 x-4-x^{2}+x$
$x^{2}-4 x-x+x+1+4=0$
$x^{2}-4 x+5=0$
$x=\frac{4 \pm \sqrt{4^{2}-4(5)(1)}}{2(1)}$
$x=\frac{4 \pm \sqrt{16-20}}{2}=\frac{4 \pm \sqrt{-4}}{2}$ no solution
at $4-x<0 \Rightarrow x \geq 4 \Rightarrow|4-x|=x-4$
$\frac{x+1}{x-1}=x-4$
$x+1=(x-1)(x-4)=x^{2}+4-x-4 x$
$x^{2}-4 x-x-x+4-1=0$
$x^{2}-6 x+3=0$
$x=\frac{6 \pm \sqrt{6^{2}-4(3)(1)}}{2(1)}$
$x=\frac{6 \pm \sqrt{36-12}}{2}=\frac{6 \pm \sqrt{24}}{2}=3 \pm \sqrt{6}$
but $x>4$
so, $x=3+\sqrt{6}$

Sol. $132 \log _{3} \frac{x-3}{x-7}+1=\log _{3} \frac{x-3}{x-1}$
$\log _{3}\left(\frac{x-3}{x-7}\right)^{2}+\log _{3} 3=\log _{3} \frac{x-3}{x-1}$
$\log _{3}\left[\frac{(x-3)^{2}}{(x-7)^{2}} \times 3\right]=\log _{3} \frac{x-3}{x-1}$
$\Rightarrow \frac{3(x-3)^{2}}{(x-7)^{2}}=\frac{(x-3)}{(x-1)}$
$3(x-3)(x-1)=(x-7)^{2}$
$\Rightarrow 3 x^{2}+9-3 x-9 x=x^{2}-14 x+49$
$\Rightarrow 2 x^{2}+2 x-40=0$
$\Rightarrow x^{2}+x-20=0$
$\Rightarrow(x+5)(x-4)=0$
$x=-5$ or $x=4$
at $x=4$ equation is
$2 \log _{3}\left(\frac{4-3}{4-7}\right)+1=\log \frac{4-3}{4-7}$
$\frac{4-3}{4-7}=\frac{+1}{-3} \Rightarrow-\mathrm{ve}$
its not possible so
$x \neq 4, x=-5$
Sol. $14 \log _{x}\left(9 x^{2}\right) \log _{3}^{2} x=4$
$\Rightarrow\left(\log _{x} 3^{2} x^{2}\right)\left(\log _{3} x\right)^{2}=4$
$\Rightarrow 2\left[\log _{x} 3 x\right]\left[\frac{\log _{e} x}{\log _{e} 3}\right]^{2}=4$
we know that $\log _{m} n=\frac{\log _{e} n}{\log _{e} m}$
$\Rightarrow 2\left[\log _{x} 3+\log _{x} x\right]\left[\frac{\log _{e} x}{\log _{e} 3}\right]^{2}=4$
$\Rightarrow\left[\frac{\log _{e} 3}{\log _{e} x}+1\right]\left[\frac{\log _{e} x}{\log _{e} 3}\right]^{2}=2$
$\Rightarrow \frac{\log _{e} 3}{\log _{e} x} \times \frac{\left(\log _{e} x\right)^{2}}{\left(\log _{e} 3\right)^{2}}+\left(\log _{3} x\right)^{2}=2$
$\Rightarrow \log _{3} x+\left(\log _{3} x\right)^{2}=2$
$\operatorname{assume}^{\log _{3}} \mathrm{x}=\mathrm{y}$
$\Rightarrow y^{2}+y=2$
$\Rightarrow y^{2}+y-2=0$
$\Rightarrow(y+2)(y-1)=0$
$y=-2$ or $y=1$
$\log _{2} x=-2$ or $\log _{3} x=1$
$x=3^{-2}$ or $x=3^{+1}$
$x=\frac{1}{9}$ or $x=3$
Sol. $15 \log _{0.5 x} x^{2}+14 \log _{16 x} x^{2}+40 \log _{4 x} \sqrt{x}=0$
$\frac{\log _{2} x^{2}}{\log _{2}(0.5 x)}+\frac{14 \log _{2} x^{2}}{\log _{2}(16 x)}+\frac{40 \log _{2} \sqrt{x}}{\log _{2}(4 x)}=0$
$\operatorname{assume} \log _{2} x=y$
$\Rightarrow \frac{2 y}{\log _{2} \cdot 2^{-1}+y}+\frac{28 y}{\log _{2} 2^{4}+y}+\frac{20 y}{\log _{2} 2^{2}+y}=0$
$\Rightarrow \frac{y}{y-1}+\frac{14 y}{y+4}+\frac{10 y}{y+2}=0$
$y=0 \operatorname{or}\left(\frac{1}{y-1}+\frac{14}{y+4}+\frac{10}{y+2}\right)=0$
$\Rightarrow \log _{2} x=y \Rightarrow x=2^{y}=2^{\circ}=1$
or $(y+4)(y+2)+14(y-1)(y+2)$
$+10(y-1)(y+4)=0$
$\Rightarrow y^{2}+8+6 y+14 y^{2}-28+$
$14 y+10 y^{2}-40+30 y=0$
$\Rightarrow 25 y^{2}+50 y-60=0$
$\Rightarrow y^{2}+2 y-\frac{60}{25}=0$
$\Rightarrow y^{2}+2 y-\frac{12}{5}=0$
$y=-\frac{2 \pm \sqrt{(2)^{2}-4(1)\left(-\frac{12}{5}\right)}}{2(1)}$
$y=\frac{2 \pm \sqrt{2^{2}\left(1+\frac{12}{5}\right)}}{2}$
$y=\frac{2 \pm 2 \sqrt{\frac{5+12}{5}}}{2}$
$y=-1 \pm \sqrt{\frac{17}{5}}$
$\log _{2} x=y$
$\Rightarrow x=2^{(-1+\sqrt{17 / 5})}$ or $2^{(-1-\sqrt{17 / 5})}$
Sol. $16 \log _{3}\left[\log _{1 / 2}^{2} x-3 \log _{1 / 2} x+5\right]=2$
assume $\log _{1 / 2} \mathrm{x}=\mathrm{y}$
$\Rightarrow \log _{3}\left[y^{2}-3 y+5\right]=2$
$y^{2}-3 y+5=9$
$y^{2}-3 y-4=0$
$(y-4)(y+1)=0$
$y=4$ or $y=-1$
$\log _{1 / 2} x=4$ or $\log _{1 / 2} x=-1$
$x=\left(\frac{1}{2}\right)^{4}$ or, $x=\left(\frac{1}{2}\right)^{-1}$
$x=\frac{1}{16}$ or, $\quad x=2$.
Sol. $17 \log _{2}(x / 4)=\frac{15}{\log _{2} \frac{x}{8}-1}$
$\Rightarrow \log _{2} x-\log _{2} 4=\frac{15}{\log _{2} x-\log _{2} 8-1}$
\Rightarrow assume $\log _{2} \mathrm{x}=\mathrm{y}$
$y-2=\frac{15}{y-3-1}=\frac{15}{y-4}$
$\Rightarrow(y-2)(y-4)=15$
$\Rightarrow y^{2}-6 y+8=15$
$\Rightarrow y^{2}-6 y-7=0$
$\Rightarrow(y-7)(y+1)=0$
$y=7$ or $y=-1$
$\log _{2} x=7 \operatorname{orlog}_{2} x=-1$
$x=2^{7}$ or $x=2^{-1}$
Sol. $18 \frac{1}{2} \log (5 x-4)+\log \sqrt{x+1}=2+\log 0.18$
$\log (5 x-4)+2 \log \sqrt{x+1}=2[2+\log 0.18]$
$\log (5 x-4)+\log (x+1)=4+2 \log 0.18$
$\log [(5 x-4)(x+1)]=4+\log (0.18)^{2}$
$\log [(5 x-4)(x+1)]=\log _{10}\left[10^{4} \times(0.18)^{2}\right]$
$(5 x-4)(x+1)=10^{4}(0.0324)=324$
$\Rightarrow 5 x^{2}+x-4=324$
$\Rightarrow 5 x^{2}+x-328=0$
$x=\frac{-1 \pm \sqrt{(1)^{2}-4(5)(-328)}}{(10)}$
$x=-\frac{-1 \pm \sqrt{1+20(328)}}{10}=\frac{-1 \pm \sqrt{6561}}{10}$
$x=\frac{-1 \pm 81}{10}=8,-\frac{41}{5}$
Sol. $19 \log x^{2}=\log (5 x-4)$
$\Rightarrow x^{2}=5 x-4$
$\Rightarrow x^{2}-5 x+4=0$
$\Rightarrow(x-4)(x-1)=0$
$x-4=0 \operatorname{or} x-1=0$
$x=4,1$
Sol. $20 \frac{1}{6} \log _{2}(x-2)-\frac{1}{3}=\log _{1 / 8} \sqrt{3 x-5}$
$\frac{1}{6} \log _{2}(x-2)-\frac{1}{3}=\log _{2^{-3}} \sqrt{3 x-5}$
$\frac{1}{6} \log _{2}(x-2)-\frac{1}{3}=-\frac{1}{3} \log _{2} \sqrt{3 x-5}$
$\frac{1}{2} \log _{2}(x-2)-1=-\log _{2} \sqrt{3 x-5}$
$\log _{2}(x-2)+2 \log _{2} \sqrt{3 x-5}=2$
$\log _{2}(x-2)+\log _{2}(3 x-5)=\log _{2} 2^{2}$
$\Rightarrow(x-2)(3 x-5)=4$
$\Rightarrow 3 x^{2}+10-6 x-5 x=4$
$\Rightarrow 3 x^{2}-11 x+6=0$
$x=\frac{11 \pm \sqrt{112-4(3)(6)}}{2(3)}=\frac{11 \pm \sqrt{121-72}}{6}$
$x=\frac{11 \pm \sqrt{49}}{6}=3, \frac{2}{3}$
at $x=\frac{2}{3}$
eq. $\Rightarrow \frac{1}{6} \log _{2}\left(\frac{1}{3}-2\right)-\frac{1}{3}$
$=\log _{1 / 8} \sqrt{3 \frac{(2)}{3}-5}=\sqrt{-3}$
not possible solution
so $x=3$
Sol. $21 \frac{\log (\sqrt{x+1}+1)}{\log (x-40)^{1 / 3}}=3$
$\frac{\log (\sqrt{x+1}+1)}{\frac{1}{3} \log (x-40)}=3$
$\log (\sqrt{x+1}+1)=\log (x-40)$
$\sqrt{x+1}+1=x-40$
$\sqrt{x+1}=x-40-1=x-41$
square both side

$$
\begin{aligned}
& x+1=(x-41)^{2}=x^{2}+41^{2}-2(41) x \\
& x^{2}-82 x-x+41^{2}-1=0
\end{aligned}
$$

$x^{2}-83 x+1680=0$
$x=83 \pm \frac{\sqrt{(83)^{2}-4(1680)(1)}}{2(1)}$
$=\frac{83 \pm \sqrt{169}}{2}=\frac{83 \pm 13}{2}=48,35$
for $x=35$
equations $\frac{\log \sqrt{35+1}+1}{\log 3 \sqrt{35-40}}=3 \sqrt{-5}$
not possible so
$x \neq 35$ and $x=48$

Sol. $221-\frac{1}{2} \log (2 x-1)=\frac{1}{2} \log (x-9)$
$2-\log (2 x-1)=\log (x-9)$
$\log (x-9)+\log (2 x-1)=2$
$\log (x-9)(2 x-1)=\log _{10} 10^{2}$
$(x-9)(2 x-1)=100$
$2 x^{2}-18 x-x+9=100$
$2 x^{2}-19 x-91=0$
$x=\frac{19 \pm \sqrt{19^{2}-4(2)(-91)}}{2(2)}=\frac{19 \pm \sqrt{1089}}{4}=13,-\frac{7}{2}$
but $x=-\frac{7}{2}$ is not in the domain
so $x=13$
Sol. $23 \log \left(3 x^{2}+7\right)-\log (3 x-2)=1$
$\log _{10}\left(\frac{3 x^{2}+7}{3 x-2}\right)=1=\log _{10} 10$
$\frac{3 x^{2}+7}{3 x-2}=10 ; \quad 3 x^{2}+7=10(3 x-2)$
$3 x^{2}+7=30 x-20$
$3 x^{2}-30 x+27=0$

$$
\begin{aligned}
& x^{2}-10 x+9=0 \\
& (x-1)(x-9)=0 \\
& x=9,1
\end{aligned}
$$

Sol. $24\left(1+\frac{1}{2 x}\right) \log 3+\log 2=\log \left(27-3^{1 / x}\right)$
$\log 3^{(1+1 / 2 x)}+\log 2=\log \left(27-3^{1 / x}\right)$
$\log 2 \times(3)^{1+1 / 2 x}=\log \left(27-3^{1 / x}\right)$
$\Rightarrow 2 \times 3^{1+1 / 2 x}=27-3^{1 / x}$
assume $3^{1 / x}=y$
$\Rightarrow 2 \times 3 \times \sqrt{y}=27-y$
square both sides
$\Rightarrow 2^{2} \times 3^{2} \times y=(27-y)^{2}$
$36 y=27^{2}+y^{2}-2(27) y$
$y^{2}-54 y-36 y+27^{2}=0$
$y^{2}-90 y+27^{2}=0$
$(y-81)(y-9)=0$
$y=81,9$
so $x=\frac{1}{\log _{3} y} \Rightarrow x=\frac{1}{\log _{3} 81}$ or $\frac{1}{\log _{3} 9}=\frac{1}{4}, \frac{1}{2}$

Sol. $25 \frac{1}{2} \log x+3 \log \sqrt{2+x}=\log \sqrt{x(x+2)}+2$
$\log x+6 \log \sqrt{2+x}=2 \log \sqrt{x(x+2)}+4$
$\log x+\log (2+x)^{3}-\log [x(x+2)]=2$
$\log \left[\frac{x(2+x)^{3}}{x(x+2)}\right]=\log 10^{2}$
$(2+x)^{2}=100$
$2+x= \pm 100$
$x\left[\begin{array}{c}100-2=98 \\ -100-2=-102\end{array}\right.$
$x=-102$ does not satisfy the equation
So $x=98$
Sol. $26 \log _{2}\left(4^{x}+1\right)=x+\log _{2}\left(2^{x+3}-6\right)$
$\log _{2}\left(4^{x}+1\right)=\log _{2} 2^{x}+\log _{2}\left(2^{x+3}-6\right)$
$\log _{2}\left(4^{x}+1\right)=\log _{2}\left[2^{x}\left[2^{x+3}-6\right]\right]$
$\Rightarrow 4^{\mathrm{x}}+1=2^{\mathrm{x}}\left[2^{\mathrm{x}} 2^{3}-6\right]$
assume $2^{x}=y$
$y^{2}+1=y[8 y-6]$
$y^{2}+1=8 y^{2}-6 y$
$7 y^{2}-6 y-1=0$
$(y-1)(7 y+1)=0$
$y=\operatorname{lor} y=-\frac{1}{7}$
$2^{x}=1 o r 2^{x}=-\frac{1}{7}$
no solution

Sol. $27 \log _{\sqrt{5}}\left(4^{x}-6\right)-\log _{\sqrt{5}}\left(2^{x}-2\right)=2$
$\log _{\sqrt{5}}\left(\frac{4^{x}-6}{2^{x}-2}\right)=2 \Rightarrow \frac{4^{x}-6}{2^{x}-2}=5$
assume $2^{x}=y$
$\Rightarrow \frac{y^{2}-6}{y-2}=5$
$y^{2}-6=5(y-2)=5 y-10$
$y^{2}-5 y-6+10=y^{2}-5 y+4=0$
$\Rightarrow(y-4)(y-1)=0$
$y=4 \quad$ or $\quad y=1$
$2^{x}=4$ or $\quad 2^{x}=1$
$x=2 o r x=0$
$x=10^{1}$ or $x=10^{-\frac{1}{4}}$
$x=0$ does not satisfy the equation
so $x=2$
Sol. $28 \log \left(3^{x}-2^{4-x}\right)=2+\frac{1}{4} \log 16-\frac{x \log 4}{2}$
$x=10$
Sol. $30 \log _{3}\left(9^{x}+9\right)=\log _{3} 3^{x}\left(28-2.3^{x}\right)$
$\Rightarrow 9^{\mathrm{x}}+9=3^{\mathrm{x}}\left(28-2 \cdot 3^{\mathrm{x}}\right)$
$\log \left(3^{x}-2^{4-x}\right)=\log _{10} 10^{2}+\frac{1}{4} \log 2^{4}-\frac{x \log 2^{2}}{2}$
\Rightarrow assume $3^{x}=y$
So $9^{x}=\left(3^{2}\right)^{x}=\left(3^{x}\right)^{2}=y^{2}$
$\log \left(3^{x}-2^{4-x}\right)=\log _{10} 100+\frac{4}{4} \log 2-\frac{x \times 2 \log _{2}}{2}$
$\Rightarrow y^{2}+9=y(28-2 y)$
$\Rightarrow y^{2}+9=28 y-2 y^{2}$
$\Rightarrow 3 y^{2}-28 y+9=0$
$\log \left(3^{x}-2^{4-x}\right)=\log _{10} \frac{(200)}{2^{x}}$
$\Rightarrow(3 y-1)(y-9)=0$
$\Rightarrow 3^{x}-\frac{2^{4}}{2^{x}}=\frac{200}{2^{x}}$
$y=9, \frac{1}{3}$
$\Rightarrow 3^{\mathrm{x}} \cdot 2^{\mathrm{x}}-2^{4}=200$
$x=2,-1$
$\Rightarrow 6^{x}=200+2^{4}=216=6^{3}$
$\Rightarrow x=3$

Sol. $29 \log (\log x)+\log \left(\log x^{4}-3\right)=0$
$\log \left[(\log x)\left(\log x^{4}-3\right)\right]=0$
$\Rightarrow(\log x)\left(\log x^{4}-3\right)=1$
$(\log x)(4 \log x-3)=1$
$\operatorname{assume} \log x=y$
$y(4 y-3)=1 ; \quad 4 y^{2}-3 y=1$
$4 y^{2}-3 y-1=0$
$(y-1)(4 y+1)=0$
$y=1$ ory $=-\frac{1}{4}$
$\log _{10} x=\operatorname{lorlog}_{10} x=-\frac{1}{4}$

EXERCISE - 2 JEE MAIN

Sol. $1 \frac{1}{\log _{\sqrt{b c}} a b c}+\frac{1}{\log _{\sqrt{a c}} a b c}+\frac{1}{\log _{\sqrt{a b}} a b c}$
$=\frac{\log \sqrt{b c}}{\log a b c}+\frac{\log \sqrt{a c}}{\log a b c}+\frac{\log \sqrt{a b}}{\log a b c}$
$=\frac{\log \sqrt{b c}+\log \sqrt{a c}+\log \sqrt{a b}}{\log a b c}$
$=\frac{\log \sqrt{b c} \sqrt{a c} \sqrt{a b}}{\log a b c}=\frac{\log a b c}{\log a b c}=1$
Sol. $2 \log _{2}\left(2 x^{2}\right)+\log _{2} x . x^{\log _{x}\left(\log _{2} x+1\right)}$

$$
\begin{aligned}
& +\frac{1}{2} \log _{4} 2 x^{4}+2^{-3 \log _{1 / 2}\left(\log _{2} x\right)}=1 \\
\Rightarrow \log _{2}\left(2 x^{2}\right) & +\left(\log _{2} x\right)(x)^{\log _{x}\left(\log _{2} x+1\right)} \\
& +\frac{1}{2} \log _{4} 4^{1 / 2} x^{4}+2^{-3 \log _{1 / 2}\left(\log _{2} x\right)}=1 \\
\Rightarrow 1+ & 2 \log _{2} x+\left(\log _{2} x\right)(x)^{\log _{x}\left(\log _{2} x+1\right)} \\
& +\frac{1}{4} \log _{4} 4+\frac{4}{2} \log _{4 x} x+2^{3 \log _{2}\left(\log _{2} x\right)}=1 \\
\Rightarrow 1+ & 2 \log _{2} x+\left(\log _{2} x+1\right)\left(\log _{2} x\right)+\frac{1}{4} \\
& +\log _{2} x+(2)^{\log _{2}\left(\log _{2} x\right)^{3}}=1 \\
\Rightarrow 1+ & 2 \log _{2 x} x+\left(\log _{2} x\right)\left(\log _{2} x+1\right)+\frac{1}{4} \\
& +\log _{2 x} x+\left(\log _{2} x\right)^{3}=1
\end{aligned}
$$

assume $\log _{2} x=y$
$\Rightarrow 2 y+y(y+1)+\frac{1}{4}+y+y^{3}=0$
$\Rightarrow y^{3}+4 y+y^{2}+\frac{1}{4}=0$
Differential of equation is
$\frac{d}{d y}\left[y^{3}+4 y+y^{2}+\frac{1}{4}\right]=0$
$\Rightarrow 3 y^{2}+4+2 y=0$
$\Rightarrow y=-\frac{-2 \pm \sqrt{2^{2}-4(4)(3)}}{2(3)}$
$y=\frac{-2 \pm \sqrt{-48+4}}{6}$
no solution so there is no minima and maximum
at $y=0 \Rightarrow f(y)=0+0+0+\frac{1}{4}>0$
$y=-1, f(y)=(-1)^{3}+4(-1)+(-1)^{2}+\frac{1}{4}$
$\Rightarrow-1-4+1+\frac{1}{4}=-4+\frac{1}{4}=-\frac{15}{4}<0$
it mean $f(y)$ is zero some where
$-1<y<0$
so $\log _{2} x<0$
but in equation (original) $\log _{2 x}$ should be positive so there is no solution

Sol. $3 x=(75)^{-10}$
$\log _{10} x=\log _{10}(75)^{-10}=-10 \log _{10} 75$
$=-10 \log _{10} 100 \times \frac{3}{4}$
$=-10\left[\log _{10} 10^{2}++\log _{10} 3-\log _{10} 2^{2}\right]$
$=-10[2+0.477-2(0.301)]=-1875$
$\Rightarrow \mathrm{x}=10^{-18.75}=10^{-18} \times 10^{-0.75}$
number of zeros $=18$
Sol. $45 x^{\log _{2} 3}+3^{\log _{2} x}=162$
assume $x=2^{y}$
$\Rightarrow 5.2^{\mathrm{ylog}_{2} 3}+3^{\log _{2} 2 y}=162$
$\Rightarrow 5.2^{\log _{2} 3^{y}}+3^{\log _{2} 2}=162$
$\Rightarrow 5.3^{y}+3^{y}=6.3^{y}=162$
$3^{y}=\frac{162}{6}=27=3^{3}$
$y=3$
$x=2^{y}=2^{3}=8$
$\log _{4} x=\log _{4} 8=\log _{4}(4)^{3 / 2}=\frac{3}{2}$
Sol. $5(x)^{\log _{10}^{2} x+\log _{10} x^{3}+3}$

$$
=\frac{2}{\frac{1}{\sqrt{x+1}-1}-\frac{1}{\sqrt{x+1}+1}}=\mathrm{B}
$$

(assume)
$B=\frac{2}{\frac{1}{\sqrt{x+1}-1}-\frac{1}{\sqrt{x+1}+1}}=\frac{2}{\frac{\sqrt{x+1}+1-\sqrt{x+1}+1}{(\sqrt{x+1}-1)(\sqrt{x+1}+1)}}$
$B=\left((\sqrt{x+1})^{2}-(1)^{2}=x+1-1=x\right.$
so $(x)^{\log _{10}^{2} x+3 \log _{10} x+3}=x \Rightarrow x=1$
or \Rightarrow assume $\log _{10} x=y$
$\Rightarrow y^{2}+3 y+3=1$
$y^{2}+3 y+2=0$
$(y+2)(y+1)=0$
$y=-2 o r y=-1$
$\log _{10} x=-2$ or $\log _{10} x=-1$
$x=10^{-2}, 10^{-1}$
$x_{1}, x_{2}, x_{3}=1,10^{-1}, 10^{-2}$
$x_{1} \cdot x_{3}=1.10^{-2}=\left(10^{-1}\right)^{2}=\left(x_{2}\right)^{2}$

Sol. $6 x=2^{\log 3}, y=3^{\log 2}$
$x=2^{\log 3}=3^{\log 2}=y$
as $a^{\log _{n} m}=m^{\log _{n} a}$
Sol. $7|x-3|^{3 x^{2}-10 x+3}=1 \quad x \neq 3$
or if $|x-3|=1$
$\Rightarrow x=2$ or 4 is solution
if $x-3 \neq 0$
then $3 x^{2}-10 x+3=0$ is another sol ${ }^{n}$
$3 x^{2}-10 x+3=0$
$(3 x-1)(x-3)=0$
$x=+3$ or $=\frac{+1}{3}$
but $x \neq 3$
so $x=\frac{1}{3}$
total solution $\Rightarrow x=\frac{1}{3}, 2,4$

Sol. $8(\sqrt{5 \sqrt{2}-7})^{x}+6(\sqrt{5 \sqrt{2}+7})^{x}=7$
assume $x=\log _{\sqrt{5 \sqrt{2}-7}} y$
$\Rightarrow(\sqrt{5 \sqrt{2}-7})^{\log _{\sqrt{\sqrt{2}-7}} y}+6(\sqrt{5 \sqrt{2}+7})^{\log _{\sqrt{5 \sqrt{2}-7}} y}=7$
$\sqrt{5 \sqrt{2}-7}=\sqrt{5 \sqrt{2}-7} \times \frac{\sqrt{5 \sqrt{2}+7}}{\sqrt{5 \sqrt{2}+7}}$
$=\frac{\sqrt{50-49}}{\sqrt{5 \sqrt{2}+7}}=(\sqrt{5 \sqrt{2}+7})^{-1}$
$\Rightarrow y+6(\sqrt{5 \sqrt{2}+7})^{-\log \sqrt{\sqrt{\sqrt{2}+7}} y^{y}}=7$
$\Rightarrow y+6 y^{-1}=7$
$\Rightarrow y^{2}+6=7 y \Rightarrow y^{2}-7 y+6=0$
$\Rightarrow(y-6)(y-1)=0$
$y=6$ or $\quad y=1$
$x=\log _{\sqrt{5 \sqrt{2-7}}} 6$ or $x=\log _{\sqrt{5 \sqrt{2-7}}} 1=0$
$\Rightarrow x=\log _{(5 \sqrt{2}-7)^{1 / 2}} 6=2 \log _{(5 \sqrt{2}-7)} 6=\log _{(5 \sqrt{2}-7)} 36$
$x=\frac{2}{\log _{6}(5 \sqrt{2}-7)}=\frac{-2}{\log _{6}(5 \sqrt{2}+7)}$

Sol. 9 Statement-I : $5^{\log _{5}\left(x^{3}+1\right)}-x^{2}=1$ have two distinct real solution

Statement-II : $a^{\log _{\mathrm{a}} \mathrm{N}}=\mathrm{N}$ when $\mathrm{a}>0$ $a \neq 1, N>0$
$\Rightarrow 5^{\log _{5} x^{3}+1}-x^{2}=1$
$\left[5^{\log _{5}\left(x^{3}+1\right)}=x^{3}+1\right]$ from statement-II
$\Rightarrow x^{3}+1-x^{2}=1$
$\Rightarrow x^{3}-x^{2}=0$
$\Rightarrow x^{3}=x^{2} \Rightarrow x=0$ or 1

Statement-I is true and II is true and II is not the correct explanation for statement -I

Sol. 10 (A) $x=\log _{2} \log _{9} \sqrt{6+\sqrt{6}+\ldots . . \infty}$
assume $x=\log _{2} \log _{9} y$
$\Rightarrow y=\sqrt{6+\sqrt{6}+\cdots \infty}=\sqrt{6+y}$
$\Rightarrow y^{2}=6+y$
$y^{2}-6-y=0$
$\Rightarrow(y-3)(y+2)=0$
$\Rightarrow y=3$ or $\quad y=-2, y \neq-2$
so $y=3$
$x=\log _{2} \log _{9} 3=\log _{2} \log _{9}(9)^{1 / 2}$
$x=\log _{2}\left(\frac{1}{2}\right)=\log _{2} 2^{-1}=-1$
$x=-1$ is an integer
(B) $\mathrm{N}=2^{\left(\log _{2} 3 \cdot \log _{3} 4 \cdot \log _{4} 5 \ldots \ldots . . \log _{99} 100\right)}$
$N=2^{x}$ assume
$\Rightarrow x=\frac{\log 3}{\log 2} \cdot \frac{\log 4}{\log 3} \ldots \frac{\log 100}{\log 99}=\frac{\log 100}{\log 2}=\log _{2} 100$
$N=2^{\log _{2} 100}=100$
$N=100$ which is a composite, integer, natural number
(C) $\frac{1}{\log _{5} 3}+\frac{1}{\log _{6} 3}-\frac{1}{\log _{10} 3}$
$\Rightarrow \frac{\log 5}{\log 3}+\frac{\log 6}{\log 3}-\frac{\log 10}{\log 3}=\left(\frac{\log 5+\log 6-\log 10}{\log 3}\right)$
$\Rightarrow \frac{\log (5 \times 6 \div 10)}{\log 3}=\frac{\log 3}{\log 3}=1$
$\Rightarrow 1$ is natural and integer number
(D)
$N=\sqrt{2+\sqrt{5}-\sqrt{6-3 \sqrt{5}+\sqrt{14-6 \sqrt{5}}}}$
$N=\sqrt{2+\sqrt{5}-\sqrt{6-3 \sqrt{5}+\sqrt{(3-\sqrt{5})^{2}}}}$
$N=\sqrt{2+\sqrt{5}-\sqrt{6-3 \sqrt{5}+(-\sqrt{5}+3)}}$
$N=\sqrt{2+\sqrt{5}-\sqrt{9-4 \sqrt{5}}}$
$N=\sqrt{2+\sqrt{5}-\sqrt{(\sqrt{5})^{2}+(2)^{2}-2(2) \sqrt{5}}}$
$N=\sqrt{2+\sqrt{5}-\sqrt{(\sqrt{5}-2)^{2}}}$
$N=\sqrt{2+\sqrt{5}-\sqrt{(\sqrt{5}-2)}}$
$=\sqrt{2+\sqrt{5}-\sqrt{5}+2}=\sqrt{4}=2$

2 is natural prime and an integer
Sol. $11 x_{1}$ and x_{2} are roots of the equation
$\sqrt{2010} x^{\log _{2010} x}=x^{2}$
assume $x=(2010)^{y}$
$\Rightarrow(2010)^{1 / 2}(2010)^{y \log _{2010}(2010)^{y}}=(2010)^{2 y}$
$\Rightarrow(2010)^{1 / 2}(2010)^{y^{2}}=(2010)^{2 y}$
$\Rightarrow y^{2}+\frac{1}{2}=2 y$
$y^{2}-2 y+\frac{1}{2}=0$
$\Rightarrow y=\frac{2 \pm \sqrt{2^{2}-4(1)(1 / 2)}}{2}=\frac{2 \pm \sqrt{2}}{2}=1 \pm \frac{1}{\sqrt{2}}$
$X_{1} X_{2}=(2010)^{1-\frac{1}{\sqrt{2}}}(2010)^{1+\frac{1}{\sqrt{2}}}$
$=(2010)^{2}=(201 \times 10)^{2}$
no. of zero in $\mathrm{x}_{1} \mathrm{x}_{2}=2$

Sol. $12 \mathrm{x}=2$ or $\mathrm{x}=3$ satisfy the equation
$\log _{4}\left(x^{2}+b x+c\right)=1=\log _{4} 4$
$\Rightarrow \mathrm{x}^{2}+\mathrm{bx}+\mathrm{c}-4=0$
$\Rightarrow-b=2+3=5$ and $c-4=2.3 \Rightarrow c=10$
$b c=10(-5)=-50$
$|b c|=50$

EXERCISE - 1 JEE ADVANCED

Sol. 1

$B=\left(2^{\log _{6} 18}\right) \cdot\left(3^{\log _{6} 3}\right)$
$B=2^{\log _{6}(6 \times 3)} \cdot 3^{\log _{6} 3}$
$B=2^{\log _{6} 6+\log _{6} 3} \cdot 3^{\log _{6} 3}$
$B=2^{1+\log _{6} 3} 3^{\log _{6} 3}=2 \times 2^{\log _{6} 3} \cdot 3^{\log _{6} 3}$
$B=2\{6\}^{\log _{6} 3}=2.3=6$
$A=\log _{10} \frac{a b+\sqrt{(a b)^{2}-4(a+b)}}{2}+$

$$
\log _{10} \frac{a b-\sqrt{(a b)^{2}-4(a+b)}}{2}
$$

$A=\log _{10}\left[\frac{a b+\sqrt{(a b)^{2}-4(a+b)}}{2} \times \frac{a b-\sqrt{(a b)^{2}-4(a+b)}}{2}\right]$
$=\log _{10}\left[\frac{(a b)^{2}-\left((a b)^{2}-4(a+b)\right)^{2 / 2}}{4}\right]$
$=\log \left[\frac{(a b)^{2}-(a b)^{2}+4(a+b)}{4}\right]=\log \frac{4(a+b)}{4}$
$=\log (a+b)=\log (43+57)=\log 100=2$
$A=2$ and $B=6$
so $A B=12$
Sol. 2 (a) $\log _{1 / 3} \sqrt[4]{729 \sqrt[3]{9^{-1} \cdot 27^{-4 / 3}}}$
$=\log _{1 / 3} \sqrt[4]{729 \sqrt[3]{3^{-2} \cdot 3^{-4}}}$
$=\log _{1 / 3} \sqrt[4]{729 \cdot 3^{-2}}=\log _{1 / 3} \sqrt[4]{81}=\log _{1 / 3} 3=-1$
(b) $a^{\frac{\log _{b}\left(\log _{b} N\right)}{\log _{b} a}}=a^{x}$ say
$x=\frac{\log _{b}\left(\log _{b} N\right)}{\log _{b} a}=\log _{a}\left(\log _{b} N\right)$
so $a^{x}=a^{\log _{a}\left(\log _{b} N\right)}=\log _{b} N$

Sol. 3 (a) $\log _{\pi} 2+\log _{2 \pi}$
$\Rightarrow \frac{\log 2}{\log \pi}+\frac{\log \pi}{\log 2}$
assume $\frac{\log 2}{\log \pi}=x+$ ve always
$(2<\pi<10)$
$\Rightarrow x+\frac{1}{x}=c$ (assume)
$x^{2}-c x+1=0$
$x=\frac{c \pm \sqrt{c^{2}-4}}{2}$
for x to be real
$c^{2}-4 \geq 0$
$c^{2} \geq 4 \Rightarrow c \geq 2$
$c=2 \Rightarrow x=1=\frac{\log _{2}}{\log _{2}}$
for all other value $c>2$
so $\log _{\pi} 2+\log _{2} \pi$ is greater than 2
(b) $\log _{3} 5$ and $\log _{2} 7$
assume $\log _{3} 5$ be rational
$\therefore \log _{3} 5=a$
$\therefore 5=3^{a}$
This is not possible when a is rational
$\therefore \mathrm{a}$ is irrational
Similarly, $\log _{2} 7=b$ assuming b is rational
which is not possible so b is irrational
Sol. $4 \log _{3} x . \log _{4} x . \log _{5} x=\log _{3} x \cdot \log _{4} x+\log _{4} x$.
$\log _{5} x+\log _{5} x \log _{3} x$
assume $\log x=y$
$\Rightarrow \frac{\log x \cdot \log x \cdot \log x}{\log 3 \log 4 \log 5}$
$=\frac{\log x \log x}{\log 3 \log 4}+\frac{\log x \log x}{\log 4 \cdot \log 5}+\frac{\log x \cdot \log x}{\log 5 \cdot \log 3}$
$\Rightarrow y^{3}=(\log 5) y^{2}+(\log 3) y^{2}+(\log 4) y^{2}$
$y^{3}=y^{2}[\log 5+\log 3+\log 4]$
$y^{3}=y^{2}[\log (3.4 .5)]=y^{2} \log 60$
$y=0$ or $y=\log 60$
$\log x=0$ or $y=\log x=\log 60$
$x=1$ or $x=60$
sum of roots $=1+60=61$
square of sum of roots $=(61)^{2}$
Sol. $5 \frac{2}{\log _{4}(2000)^{6}}+\frac{3}{\log _{5}(2000)^{6}}$
$\frac{2}{6 \log _{4}(2000)}+\frac{3}{6 \log _{5}(2000)}$
$\frac{1}{6}\left[\frac{2}{\log _{4}\left(4^{2} \times 5^{3}\right)}+\frac{3}{\log _{5}\left(5^{3} \times 4^{2}\right)}\right]$
$\frac{1}{6}\left[\frac{2}{\log _{4} 4^{2}+\log _{4} 5^{3}}+\frac{3}{\log _{5} 5^{3}+\log _{5} 4^{2}}\right]$
$\frac{1}{6}\left[\frac{2}{2+3 \log _{4} 5}+\frac{3}{3+2 \log _{5} 4}\right]$
$\frac{1}{6}\left[\frac{2}{2+\frac{3 \log 5}{\log 4}}+\frac{3}{3+\frac{2 \log 4}{\log 5}}\right]$
$\frac{1}{6}\left[\frac{2 \log 4}{2 \log 4+3 \log 5}+\frac{3 \log 5}{3 \log 5+2 \log 4}\right]$
$\frac{1}{6}\left[\frac{2 \log 4+3 \log 5}{2 \log 4+3 \log 5}\right]=\frac{1}{6}$

Sol. $6 \frac{81^{\frac{1}{\log _{5} 9}}+3^{\frac{3}{\log _{\sqrt{5}} 3}}}{409}\left((\sqrt{7})^{\frac{2}{\log _{25} 7}}-(125)^{\log _{25} 6}\right)$
$\frac{9^{2 \log _{9} 5}+3^{3 \log _{3} \sqrt{6}}}{409}\left((\sqrt{7})^{2 \log _{7} 25}-(25)^{\frac{3}{2^{2}} \log _{25} 6}\right)$
$\frac{9^{\log _{9} 5^{2}}+3^{\left.\log _{9} \sqrt{6}\right)^{3}}}{409}\left[7^{\log _{7} 25}-25^{\log _{25} 6^{3 / 2}}\right]$
$\frac{5^{2}+(\sqrt{6})^{3}}{409}\left[25-6^{3 / 2}\right]=\frac{\left(5^{2}\right)^{2}-\left(6^{3 / 2}\right)^{2}}{409}$
$=\frac{(25)^{2}-6^{3}}{409}=\frac{409}{409}=1$
Sol. $7(5)^{\log _{1 / 5}\left(\frac{1}{2}\right)}+\log _{\sqrt{2}} \frac{4}{\sqrt{7}+\sqrt{3}}$

$$
+\log _{1 / 2} \frac{1}{10+2 \sqrt{21}}
$$

$\Rightarrow 5^{\log _{2} 2}+\log _{2^{\frac{1}{2}}}\left(\frac{4}{\sqrt{7}+\sqrt{3}}\right)+\log _{2^{-1}} \frac{1}{10+2 \sqrt{21}}$
$\Rightarrow 2+\log _{2}\left(\frac{4}{\sqrt{7}+\sqrt{3}}\right)^{2}+\log _{2} 10+2 \sqrt{21}$
$\left(\frac{4}{\sqrt{7}+\sqrt{3}}\right)^{2}=\frac{16}{7+3+2 \sqrt{7} \sqrt{3}}=\frac{16}{10+2 \sqrt{21}}$
$\Rightarrow 2+\log _{2} \frac{16}{10+2 \sqrt{21}}(10+2 \sqrt{21})$
$=2+\log _{2} 2^{4}=2+4=6$
Sol. $8 \log _{2} a=s \Rightarrow a=2^{s}$
$\log _{4} \mathrm{~b}=\mathrm{s}^{2} \Rightarrow \mathrm{~b}=4^{4^{2}}=(2)^{2 s^{2}}$
and $\log _{c^{2}} 8=\frac{2}{s^{3}+1} \Rightarrow 8^{\frac{1}{2}}=c^{\frac{2}{s^{3}+1}}$
$\Rightarrow c=\left(2^{3 / 2}\right)^{\frac{3^{3}+1}{2}} ; \quad c=2^{\frac{3\left(s^{3}+1\right)}{4}}$
then $\frac{a^{2} b^{5}}{c^{4}}=\frac{\left(2^{5}\right)^{2}\left(2^{2 s^{2}}\right)^{5}}{\left(2^{\frac{\left(s^{3}+1\right)}{4}}\right)^{4}}=\frac{2^{2 s} 2^{10 s^{2}}}{2^{3\left(s^{3}+1\right)}}$
$=(2)^{\left(2 s+10 s^{2}-3\left(s^{3}+1\right)\right)}$
$\Rightarrow \log _{2} \frac{a^{2} b^{5}}{c^{4}}=\left(2 s+10 s^{2}-3\left(s^{3}+1\right)\right)$

Sol. $9 \frac{\log _{2} 24}{\log _{96} 2}-\frac{\log _{2} 192}{\log _{12} 2}$
\Rightarrow we know that
$\log _{m} n=\frac{1}{\log _{n} m}$
$\Rightarrow\left(\log _{2} 96\right)\left(\log _{2} 24\right)-\left(\log _{2} 192\right)\left(\log _{2} 12\right)$
Where
$\Rightarrow \log _{2} 24=\log _{2} 12 \times 2=\log _{2} 12+\log _{2} 2$
$\Rightarrow \log _{2} 96\left(\log _{2} 12+\log _{2} 2\right)$

$$
-\log _{2}(96 \times 2) \log _{2} 12
$$

$\Rightarrow \log _{2} 96 \log _{2} 12+\log _{2} 96(1)$
$-\log _{2} 96 \log _{2} 12-\log _{2} 12 \log _{2} 2$
$\Rightarrow \log _{2} 96-\log 12(1)$
$=\log _{2} \frac{96}{12}=\log _{2} 8=\log _{2} 2^{3}=3 \log _{2} 2=3$

Sol. 10 We have to prove that
$a^{x}-b^{y}=0$, where $x=\sqrt{\log _{a} b}$
and $y=\sqrt{\log _{b} a} \Rightarrow x^{2}=\log _{a b}$
$y^{2}=\log _{b} a \Rightarrow y^{2}=\frac{1}{x^{2}}$
$x^{2} y^{2}=1$
$x y=1(x, y>0)$
now $a^{x}-b^{y}=\left(b^{y^{2}}\right)^{x}-\left(a^{x^{2}}\right)^{y}$
$\Rightarrow\left(\mathrm{b}^{x y}\right)^{y}-\left(\mathrm{a}^{x y}\right)^{x}$
$\Rightarrow b^{y}-a^{x}$
$\Rightarrow a^{x}-b^{y}=b^{y}-a^{x}=-\left(a^{x}-b^{y}\right)$
$\Rightarrow a^{x}-b^{y}+a^{x}-b^{y}=0$
$\Rightarrow 2\left(a^{x}-b^{y}\right)=0$
$\Rightarrow \mathrm{a}^{\mathrm{x}}-\mathrm{b}^{\mathrm{y}}=0$

Sol. 11 (a) $\frac{\log _{10}(x-3)}{\log _{10}\left(x^{2}-21\right)}=\frac{1}{2}$
$\Rightarrow 2 \log _{10}(x-3)=\log _{10}\left(x^{2}-21\right)$
$\Rightarrow \log _{10}(x-3)^{2}-\log _{10}\left(x^{2}-21\right)=0$
$\Rightarrow \log _{10} \frac{(x-3)^{2}}{\left(x^{2}-21\right)}=0$
$\Rightarrow \frac{(x-3)^{2}}{x^{2}-21}=1 \Rightarrow x^{2}+3^{2}-2(3) x=x^{2}-21$
$\Rightarrow 9-6 x=-21 \Rightarrow 6 x=9+21 \Rightarrow x=\frac{30}{6}=5$
(b) $\log (\log x)+\log \left(\log x^{3}-2\right)=0$
$\Rightarrow \log \left[\log x\left(\log x^{3}-2\right)\right]=0$
$\Rightarrow(\log x)\left(\log x^{3}-2\right)=1$
$\Rightarrow(\log x)(3 \log x-2)=1$
assume $\log x=y$
$\Rightarrow y(3 y-2)=1$
$\Rightarrow 3 y^{2}-2 y-1=0$
$\Rightarrow 3 y(y-1)+1(y-1)=0$
$y=-\frac{1}{3}$ or $y=1$
$\log _{10} x=-\frac{1}{3}$ or $\log _{10} x=1$
$x=(10)^{-\frac{1}{3}}$ or $x=10^{1}$
at $x=10^{-1 / 3}$ equation does not satisfied so $x=10$
(c) $\log _{x} 2 \cdot \log _{2 x} 2=\log _{4 x} 2$
$\Rightarrow \frac{1}{\log _{2} x} \cdot \frac{1}{\log _{2} 2 x}=\frac{1}{\log _{2} 4 x}$
$\Rightarrow \log _{2} 2^{2}+\log _{x}=\left(\log _{2} x\right)\left(\log _{2} 2+\log _{2} x\right)$
assume $\log _{2} x=y$
$\Rightarrow 2+y=y(1+y)$
$\Rightarrow 2+y=y^{2}+y$
$\Rightarrow \mathrm{y}^{2}=2 \Rightarrow \mathrm{y}= \pm \sqrt{2}$
$\log x= \pm \sqrt{2}$
$\log _{2} x=+\sqrt{2}$ or $\log _{2} x=-\sqrt{2}$
$x=(2)^{\sqrt{2}}$ or $x=2^{-\sqrt{2}}$
(d) $5^{\log _{a} x}+5 x^{\log _{a} 5}=3,(a>0)$
assume $x=a^{y}$
$\Rightarrow 5^{\log _{a} a^{y}}+5 a^{y \log _{a} 5}=3$
$\Rightarrow 5^{y}+5 a^{\log _{a} 5^{y}}=5^{y}+5.5^{y}=6.5^{y}=3$
$\Rightarrow 5^{y}=\frac{3}{6}=\frac{1}{2}=2^{-1}$
Take logarithm (base 5) both side
$\Rightarrow \log _{5} 5^{y}=\log _{5} 2^{-1}$
$\Rightarrow \mathrm{y}=\log _{5} 2^{-1}$
So $x=a^{y}=a^{\log _{5} 2^{-1}}$
$x=\left(2^{-1}\right)^{\log _{5} a}=2^{-\log _{5} a}$
Sol. $12 \log _{a} x \log _{a}(x y z)=48$. \qquad
$\log _{a} y \log _{a}(x y z)=12$
$\log _{a} z \log _{a}(x y z)=84$.
sum of all equation
$\log _{a}(x y z)\left[\log _{a} x+\log _{a} y+\log _{a} z\right]$
$=48+12+84=144=12^{2}$
$\left(\log _{a}(x y z)\right)\left(\log _{a}(x y z)\right)=12^{2}$
$\left(\log _{a} x y z\right)^{2}=12^{2}$
$\log _{a} x y z=12(\pm 1)$
in equation
(i) $\log _{\mathrm{a}} \mathrm{x}(\pm 12)=48$
$\log _{\mathrm{a}} \mathrm{x}= \pm 4 \Rightarrow \mathrm{x}=\mathrm{a}^{4}, \mathrm{a}^{-4}$
(ii) $\log _{a} y(\pm 12)=12$
$\log _{a} y= \pm 1 \Rightarrow y=a, a^{-1}$
(iii) $\log _{a} z(\pm 12)=84$
$\log _{a} z= \pm 7 \Rightarrow z=a^{7}, a^{-7}$
$(x, y, z)=\left(a^{4}, a, a^{7}\right)$ or $\left(a^{-4}, a^{-1}, a^{-7}\right)$
Sol. 13 Given
$\mathrm{L}=$ antilog of 0.4 to the base 1024
$\Rightarrow L=(1024)^{0.4}=\left(2^{10}\right)^{0.4}=2^{4}=16$
$L=16$
And M is the number of digits in 6^{10}
$\Rightarrow \log _{10} 6^{10}=10 \log _{10} 6$
$\Rightarrow 10[0.7761]=7.761$
$\Rightarrow 6^{10}=10^{7.761}=10^{7} 10^{0.761}$
no. of digits $=7+1=8$
$M=8$
$\Rightarrow \log _{6} 6^{2}=2$ (characteristic 2$)$
$\Rightarrow \log _{6} 6^{3}=3$ (characteristic 3)
Total no. of positive integers which have the characteristic 2 (between 6^{2} and 6^{3}) $=6^{3}-6^{2}$
$=216-36=180$
$\mathrm{LMN}=16 \times 8 \times 180=23040$

Sol. $14 \log _{a} N . \log _{b} N+\log _{b} N . \log _{c} N$
$+\log _{c} N . \log _{a} N$.
$=\frac{\log _{a} N \cdot \log _{b} N \cdot \log _{c} N}{\log _{a b c} N}$
we know that $\log _{x} y=\frac{\log y}{\log x}$
so is equation (1) R.H.S.

$$
=\frac{\frac{\log N}{\log a} \cdot \frac{\log N}{\log b} \cdot \frac{\log N}{\log c}}{\frac{\log N}{\log a b c}}
$$

$=\frac{(\log N)^{2} \log a b c}{(\log a) \log b(\log c)}$
$=\frac{\log N^{2}(\log a+\log b+\log c)}{\log a \log b \log c}$
$=\frac{(\log N)(\log N)}{\log b \log c}+\frac{\log N \log N}{\log a \log c}$
$+\frac{\log N \log N}{\log a \log b}$
$=\log _{\mathrm{a}} \mathrm{N} \log _{\mathrm{b}} \mathrm{N}+\log _{\mathrm{a}} \mathrm{N} \log _{\mathrm{c}} \mathrm{N}$
$+\log _{b} N \log _{c} \mathrm{~N}$
R.H.S. $=$ L.H.S.

Sol. $15 x, y>0$ and
$\log _{y} x+\log _{x} y=\frac{10}{3}$
$\Rightarrow \frac{\log x}{\log y}+\frac{\log y}{\log x}=\frac{10}{3}$
assume $\frac{\log x}{\log y}=a$
$\Rightarrow a+\frac{1}{a}=\frac{10}{3}$
$\Rightarrow 3 a^{2}-10 a+3=0$
$\Rightarrow(3 a-1)(a-3)=0$
$\Rightarrow a=3,\left(\frac{1}{3}\right)$

So $\frac{\log x}{\log y}=3 \Rightarrow$ add +1 both side
$\frac{\log x}{\log y}+1=3+1=4$
$\Rightarrow \frac{\log x+\log y}{\log y}=4$
$\Rightarrow \frac{\log (x y)}{\log y}=\frac{\log _{12} 12^{2}}{\log y}=4$
$\Rightarrow \frac{2}{\log _{12} y}=4$
$\log _{12} y=\frac{2}{4}=\frac{1}{2} \Rightarrow y=12^{1 / 2}$
so $x=\frac{144}{y}=144 \times 12^{-\frac{1}{2}}=12^{2-\frac{1}{2}}=12^{\frac{3}{2}}$
$\frac{x+y}{2}=\sqrt{N}$
$\Rightarrow \frac{(x+y)^{2}}{2^{2}}=N$
$\Rightarrow x^{2}+y^{2}+2 x y=4 N$
$\Rightarrow\left(12^{3 / 2}\right)^{2}+\left(12^{1 / 2}\right)+2(144)=4 N$
$\Rightarrow 12^{3}+12+2 \times 144=4 N$
$4 N=2028 \Rightarrow N=\frac{2028}{4}$
$\Rightarrow \mathrm{N}=507$

Sol. $16(a) \log _{10} 2=0.3010, \log _{10} 3=0.4771$
$\Rightarrow 5^{200}=x$ (assume)
$\log _{10} x=\log _{10} 5^{200}=200 \log _{10} 5$
$=200 \log _{10} \frac{10}{2}=200\left(\log _{10} 10-\log _{10} 2\right)$
$=200(1-0.3010)=200(0.699)$
$=139.8$
$\Rightarrow x=10^{139} \times 10^{0.8}$
no. of digits in $x=139+1=140$
(b) $x=6^{15}$
$\Rightarrow \log _{10} x=\log _{10} 6^{15}=15 \log _{10} 6$
$=15(\log 2+\log 3)=15 \times(0.778)$
$=1167$
$\therefore x=10^{1167}=10^{11} 10^{0.67}$
no. of digits in $x=11+1=12$
(c) number of zeros after the decimal in
$3^{-100}=(x)$ (assume)
$\log x=\log 3^{-100}=-100 \log _{10} 3$
$=-100(0.4771)=-47.71$
so $x=10^{-47.71}=10^{-47} \times 10^{-0.71}$
no of zeros $=47$

Sol. $17 \log _{5} 120+(x-3)-2 \log _{5}\left(1-5^{x-3}\right)$
$=-\log _{5}\left(2-5^{x-4}\right)$
$\log _{5} 120+(x-3)-\log _{5}\left(1-5^{x-3}\right)^{2}+\log _{5}\left(2-5^{x-4}\right)=0$
$\log _{5} \frac{120 \times 5^{x-3} \times\left(2-5^{x-4}\right)}{\left(1-5^{x-3}\right)^{2}}=0$
$\Rightarrow \frac{120 \times 5^{x-3} \times\left(2-5^{x-4}\right)}{\left(1-5^{x-3}\right)^{2}}=1$
$\Rightarrow \frac{120}{5^{3}} 5^{x}\left[2-\frac{5^{x}}{5^{4}}\right]=1^{2}+5^{2(x-3)}-2\left(5^{x-3}\right)$
assume $5^{x}=y$
$\Rightarrow \frac{120}{5 \times 5 \times 5} y\left[2-\frac{y}{25 \times 25}\right]=1+y^{2} 5^{-6}-\frac{2 \times y}{5^{3}}$
multiply by 5^{6}
$\Rightarrow 5^{3} \times 120 y\left[2-y 5^{-4}\right]=5^{6}+y^{2}-2 x 5^{3} y$
$5^{3} \times 240 y-\frac{120 y^{2}}{5}=5^{6}+y^{2}-2 \times 5^{3} y$
$5^{3} \times 240 y-24 y^{2}=5^{6}+y^{2}-2 \times 5^{3} y$
$5^{4} \times 48 y-25 y^{2}=5^{6}-10 \times 5^{2} y$
Divide by 5^{2}
$5^{2} \times 48 y-y^{2}=5^{4}-10 y$
$\Rightarrow \mathrm{y}^{2}-\mathrm{y}\left(10+5^{2} \times 48\right)+5^{4}=0$
$\Rightarrow y^{2}-1210 y+625=0$
$\Rightarrow y=\frac{1210 \pm \sqrt{(1210)^{2}-4(1)(625)}}{2}$
$\Rightarrow y=\frac{1210 \pm 1208.96}{2}$
$y=0.51675$ or $y=1209.48$
$5^{x}=y=0.51675$
$x=\log _{5} y$
$x=-0.410$
Sol. $18 \log _{x+1}\left(x^{2}+x-6\right)^{2}=4$
$\Rightarrow\left(x^{2}+x-6\right)^{2}=(x+1)^{4}$
$\Rightarrow\left(x^{2}+x-6\right)= \pm(x+1)^{2}$
$+v e \rightarrow x^{2}+x-6=(x+1)^{2}$
(and $x^{2}+x-6 \geq 0$)
$x^{2}+x-6=x^{2}+1+2 x$
$x=-6-1=-7$
in the equation base is $x+1=-7+1=-6$
which is negative

$$
\text { so } x \neq-7
$$

$-\mathrm{ve} \rightarrow \mathrm{x}^{2}+\mathrm{x}-6<0$
$x^{2}+x-6=-(x+1)^{2}$
$x^{2}+x-6=-x^{2}-1-2 x$
$2 x^{2}+3 x-5=0$
$(2 x+5)(x-1)=0$
$x=-\frac{5}{2}$ or $x=1$
$x=-\frac{5}{2}$ also does not satisfy equation
so $x=1$
Sol. $19 x+\log _{10}\left(1+2^{x}\right)=x \log _{10} 5+\log _{10} 6$
$\Rightarrow \log _{10} 10^{x}+\log _{10}\left(1+2^{x}\right)=\log _{10} 5^{x}+\log _{10} 6$
$\Rightarrow \log _{10}\left[10^{x}\left(1+2^{\mathrm{x}}\right)\right]=\log _{10}\left[5^{\mathrm{x}} 6\right]$
$\Rightarrow 10^{x}\left(1+2^{x}\right)=65^{x}$
$\Rightarrow 10^{x}+20^{x}=5^{x} 6$
divide by 5^{x}
$\Rightarrow \frac{10^{x}}{5^{x}}+\frac{20^{x}}{5^{x}}=\frac{6 \times 5^{x}}{5^{x}}=6$
$\Rightarrow 2^{x}+4^{x}=6$
$\Rightarrow 2^{x}+2^{2 x}=6$
assume $2^{x}=y$
$y+y^{2}=6$
$y^{2}+y-6=0$
$\Rightarrow(y-2)(y+3)=0$
$y=-3 o r y=2$
$2^{x}=-3$ or $2^{x}=2$
Not possible2 ${ }^{x}=2=2^{1}$
real solution $\Rightarrow x=1$

Sol. $202 \log (2 y-3 x)=\log x+\log y$
we have to find $\left(\frac{x}{y}\right)$
$\Rightarrow \log (2 y-3 x)^{2}=\log (x y)$
$\Rightarrow 4 y^{2}-12 x y+9 x^{2}=x y$
Let $\mathrm{x}=\mathrm{ky}$
$\Rightarrow 4 \mathrm{y}^{2}-12 \mathrm{ky}^{2}+9 \mathrm{k}^{2} \mathrm{y}^{2}=\mathrm{ky}^{2}$
$\Rightarrow 9 \mathrm{k}^{2}-13 \mathrm{k}+4=0$
$\Rightarrow(9 \mathrm{k}-4)(\mathrm{k}-1)=0$
$\Rightarrow k=1, \frac{4}{9}$

If $k=1 \Rightarrow x=y \Rightarrow 2 y-3 x$ is $-v e$

$$
\therefore \frac{x}{y}=\frac{4}{9}
$$

Sol. $21 a=\log _{12} 18 \& b=\log _{24} 54$
$a=\frac{\log _{2} 18}{\log _{2} 12}=\frac{2 \log _{2} 3+1}{2+\log _{2} 3}$
$(a-2) \log _{2} 3=1-2 a$
$b=\frac{\log _{2} 54}{\log _{2} 24}=\frac{3 \log _{2} 3+1}{3+\log _{2} 3}$
$(b-3) \log _{2} 3=1-3 b$
$(a-2)(1-3 b)=(1-2 a)(b-3)$
$2 a(b-3)+(a-2)(1-3 b)=b-3$
$2 a b-6 a+a-3 a b-2+6 b=b-3$
$-a b-5 a+5 b+1=0$
$5(b-a)-a b+1=0$
$\Rightarrow 5(a-b)+a b=1$
Sol. $22 \sqrt{\log _{9}\left(9 x^{8}\right) \log _{3}(3 x)}=\log _{3} x^{3}$
$\Rightarrow \sqrt{\left(1+4 \log _{3} x\right)\left[1+\log _{3} x\right]}=3 \log x$
assume $\log _{3} x=y$
$\Rightarrow(1+4 y)(1+y)=(3 y)^{2}=9 y^{2}$
$\Rightarrow 1+4 y^{2}+4 y+y=9 y^{2}$
$\Rightarrow 5 y^{2}-5 y-1=0$
$\Rightarrow y=\frac{5 \pm \sqrt{5^{2}-4(-1)(5)}}{2(5)}=\frac{5 \pm \sqrt{25+20}}{10}$
$y=\frac{5 \pm \sqrt{45}}{10}=\frac{5 \pm \sqrt{3^{2} \times 5}}{10}=\frac{5 \pm 3 \sqrt{5}}{10}$
in equation (i) $\log _{3} x>0$
so $y=\frac{5+3 \sqrt{5}}{10}$
Sol. $23 \mathrm{xyz}=10^{81}$
$\left(\log _{10 x}\right)\left(\log _{10 y z}\right)+\left(\log _{10 y}\right)\left(\log _{10 z}\right)=468$
we know that $(a+b+c)^{2}$
$=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a$
$=a^{2}+b^{2}+c^{2}+2 a(b+c)+2 b c$
$\Rightarrow \log _{10} x\left(\log _{10} y+\log _{z}\right)+\left(\log _{10} y\right)\left(\log _{10} z\right)$
$=468$
assume $\log x=a$
$\log y=b$
$\log z=c$
$\Rightarrow a(b+c)+b c=468$
from equation (i)
$2 a(b+c)+2 b c=(a+b+c)^{2}-\left(a^{2}+b^{2}+c^{2}\right)$
$\Rightarrow 2 \mathrm{a}(\mathrm{b}+\mathrm{c})+2 \mathrm{bc}=2 \times 468=936$
$\Rightarrow(a+b+c)^{2}-\left(a^{2}+b^{2}+c^{2}\right)=936$
$\Rightarrow \mathrm{a}+\mathrm{b}+\mathrm{c}=\log \mathrm{x}+\log \mathrm{y}+\log \mathrm{z}$
$=\log x y z=\log 10^{81}=81$
$\Rightarrow 81^{2}-\left(a^{2}+b^{2}+c^{2}\right)=936$
$a^{2}+b^{2}+c^{2}=81^{2}-936=5625$
which is $\rightarrow(\log x)^{2}+(\log y)^{2}+(\log z)^{2}=5625$
Sol. 24 sum of all solution of equation
$\Rightarrow[3]^{\left(\log _{x}\right)^{2}-\frac{2}{2} \log _{9} x+5}=3 \sqrt{3}$
$\Rightarrow(3)^{\left(\log _{9} x\right)^{-}-\frac{9}{2} \log _{9} x+5}=(3)^{3 / 2}$
$\Rightarrow\left(\log _{9} x\right)^{2}-\frac{9}{2} \log _{9} x+5=\frac{3}{2}$
assume $\log _{9} \mathrm{x}=\mathrm{y}$
$\Rightarrow y^{2}-\frac{9}{2} y+5=\frac{3}{2}$
$\Rightarrow y^{2}-\frac{9}{2} y+5-\frac{3}{2}=y^{2}-\frac{9}{2} y+\frac{7}{2}=0$
$\Rightarrow 2 y^{2}-9 y+7=0$
$\Rightarrow(2 y-7)(y-1)=0$
$y=\frac{7}{2} ; y=1$
$\log _{9} x=\frac{7}{2} \log _{9} x=1$
$x=(9)^{7 / 2}=3^{7} ; x=9$
Sum of solution $=3^{7}+9=2196$
Sol. $25 \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}>0$
$\because \log _{a} b=\frac{3}{2}$ and $\log _{c} d=\frac{5}{4}, a-c=9$
$\frac{\log b}{\log a}=\frac{3}{2} ; \frac{\log d}{\log c}=\frac{5}{4}$
$2 \log b=3 \log a$
$4 \log d=5 \log c$
$b=a^{\frac{3}{2}}, d=c^{\frac{5}{4}}$
\therefore a should be perfect square '
$\& \mathrm{c}$ should be perfect power of 4

Let $\mathrm{a}=25$
$c=16$
$\therefore \mathrm{b}=(5)^{3}=125$
$d=(16)^{5 / 4}=32$
$\therefore \mathrm{b}-\mathrm{d}=93$

Sol. 26 Refer Sol 11 of Ex 2 JEE Main

Sol. 27

$\log ^{2}\left[1+\frac{4}{x}\right]+\log ^{2}\left[1-\frac{4}{x+4}\right]=2 \quad \log ^{2}$ $\left[\frac{2}{x-1}-1\right]$
$\log ^{2}\left[\frac{x+4}{x}\right]+\log ^{2}\left[\frac{x+4-4}{x+4}\right]=2 \log ^{2}$ $\left[\frac{2-(x-1)}{x-1}\right]$
$\log ^{2}\left(\frac{x+4}{x}\right)+\log ^{2}\left(\frac{x}{x+4}\right)=2 \log ^{2}\left(\frac{2-x+1}{x-1}\right)$
we know $\log \frac{1}{x}=-\log x$. So $\left(\log \frac{1}{x}\right)^{2}=(\log$ $x)^{2}$
$\Rightarrow \log ^{2}\left(\frac{x+4}{x}\right)+\log ^{2}\left(\frac{x+4}{x}\right)=2 \log ^{2}\left(\frac{3-x}{x-1}\right)$
$\log ^{2}\left(\frac{x+4}{x}\right)=\log ^{2}\left(\frac{3-x}{x-1}\right)$

So $\frac{x+4}{x}=\frac{3-x}{x-1}$ or $\frac{x}{x+4}=\left(\frac{3-x}{x-1}\right)$
$x^{2}+4 x-x-4=3 x-x^{2}$ or
$x^{2}-x=3 x+12-x^{2}-4 x$
$2 x^{2}-4=0$ or $2 x^{2}=12$
$x^{2}=2$ or $x^{2}=6$
$x= \pm \sqrt{2}$ or $x= \pm \sqrt{6}$
$x=-\sqrt{2}$ and $-\sqrt{6}$ don't satisfied equation
so $x=\sqrt{2}, \sqrt{6}$

Sol. 28

$\log _{3}(\sqrt{x}+|\sqrt{x}-1|)=\log _{9}(4 \sqrt{x}-3+4|\sqrt{x}-1|$)
$\log _{3}(\sqrt{x}+|\sqrt{x}-1|)=\frac{1}{2} \log _{3}(4 \sqrt{x}+-3+4|\sqrt{x}-1|)$
$\Rightarrow 2 \log _{3}(\sqrt{x}+|\sqrt{x}-1|)=\log _{3}(4 \sqrt{x}-3+4|\sqrt{x}-1|)$
$\Rightarrow \log _{3}(\sqrt{x}+|\sqrt{x}-1|)^{2}=\log _{3}(4 \sqrt{x}-3+4 \mid(\sqrt{x}-1 \mid)$
$\Rightarrow(\sqrt{x}+|\sqrt{x}-1|)^{2}=(4 \sqrt{x}-3+4|\sqrt{x}-1|)$
$x+(\sqrt{x}-1)^{2}+2 \sqrt{x}|\sqrt{x}-1|=4 \sqrt{x}-3+4|\sqrt{x}-1|$
(i) assume $(\sqrt{x}-1)<0$
$\Rightarrow|\sqrt{x}-1|=1-\sqrt{x}$
$\Rightarrow x+x+1-2 \sqrt{x}+2 \sqrt{x}(1-\sqrt{x})$ $=4 \sqrt{x}-3+4(1-\sqrt{x})$
$\Rightarrow 1+2 x-2 \sqrt{x}+2 \sqrt{x}-2 x=4 \sqrt{x}-3+4-4 \sqrt{x}$

1 = 1 always correct
so $\sqrt{x}-1<0$ and $x>0$
$\sqrt{x}<0$
$\Rightarrow x \in[0,1]$
and if $\sqrt{x}-1 \geq 0, \sqrt{x}>0$
$x+x+1-2 \sqrt{x}+2 \sqrt{x}(\sqrt{x}-1)$

$$
=4 \sqrt{x}-3+4(\sqrt{x}-1)
$$

$2 x+1-2 \sqrt{x}+2 x-2 \sqrt{x}=4 \sqrt{x}-3-4+4 \sqrt{x}$
$4 x+1+7-4 \sqrt{x}=8 \sqrt{x}$
$4 x-12 \sqrt{x}+8=0$
$x-3 \sqrt{x}+2=0$
$(\sqrt{x}-2)(\sqrt{x}-1)=0$
$\Rightarrow \sqrt{x}-2=0 \operatorname{or} \sqrt{x}-1=0$

$$
x=4 \text { or } x=1
$$

Put condition was $\Rightarrow \sqrt{x}-1 \geq 0$
so $x=[0,1] \&\{4\}$

Sol. 29

$2^{\left(\sqrt{\log _{a} \sqrt[4]{a b}+\log _{b} \sqrt[4]{\mathrm{ab}}}-\sqrt{\log _{a} \sqrt[4]{b / a}+\log _{b} \sqrt[4]{a / b}}\right) \cdot \sqrt{\log _{a} b}}$
assume $\Rightarrow 2^{\mathrm{x}}$
$\Rightarrow x=\binom{\sqrt{\frac{1}{4}\left(\log _{a}(a \times b)+\log _{b}(a \times b)\right)}}{-\sqrt{\left(\log _{a} \mathrm{ba}^{-1}+\log _{b} \mathrm{ab}^{-1}\right) \frac{1}{4}}} \sqrt{\log _{a} \mathrm{~b}}$
$x=\frac{1}{2}\left[\begin{array}{c}\sqrt{1+\log _{a} b+1+\log _{b} a} \\ -\sqrt{-1+\log _{a} b-1+\log _{b} a}\end{array}\right] \sqrt{\log _{a} b}$
$x=\frac{1}{2}\left[\begin{array}{c}\sqrt{2 \log _{a} b+1+\left(\log _{a} b\right)^{2}} \\ -\sqrt{-2 \log _{a} b+\left(\log _{a} b\right)^{2}+1}\end{array}\right]$
we know $\log _{a} b=\frac{1}{\log _{b} a}$
$x=\frac{1}{2}\left(\sqrt{\left(1+\log _{a} b\right)^{2}}-\sqrt{\left(\log _{a} b-1\right)^{2}}\right)$
$x=\frac{1}{2}\left(\left|1+\log _{a} b\right|-\left|\log _{a} b-1\right|\right)$
when $\log _{\mathrm{a}} \mathrm{b} \geq 1 \Rightarrow \mathrm{~b} \geq \mathrm{a}>1$
$x=\frac{1}{2}\left(1+\log _{a} b-\log _{a} b+1\right)=\frac{1}{2} \times 2=1$
so $\Rightarrow 2^{x}=2^{1}=2 \quad($ when $b \geq a>1)$
when $\log _{\mathrm{a}} \mathrm{b}<1$
$\Rightarrow \mathrm{b}<\mathrm{a}, \mathrm{a}, \mathrm{b}>1$
$\Rightarrow x=\frac{1}{2}\left[1+\log _{a} b-\left(1-\log _{a} b\right)\right]$
assume
$A=\sqrt{\left[\frac{1}{3} \log _{3}(3 x)+\frac{1}{3} \log _{x}(3 x)\right] \log _{3} x^{3}}$
$x=\frac{1}{2}\left[1+\log _{a} b+\log _{a} b\right]=\frac{1}{2} 2 \log _{a} b$
$x=\log _{a} b$
$2^{\mathrm{x}}=2^{\log _{\mathrm{a}} \mathrm{b}}$ (if $1<\mathrm{b}<\mathrm{a}$)
Sol. $30 \sqrt{\left[\log _{3}(3 x)^{1 / 3}+\log _{x}(3 x)^{1 / 3}\right] \log _{3} x^{3}}+$

$$
\left[\sqrt{\log _{3}\left(\frac{x}{3}\right)^{\frac{1}{3}}+\log _{x}\left(\frac{3}{x}\right)^{\frac{1}{3}}}\right] \log _{3} x^{3}
$$

$A=\sqrt{\frac{3}{3}\left[\left(\log _{3} x+1\right)+\left(\log _{x} 3+1\right)\right] \log _{3} x}$
$A=\sqrt{\left(2 \log _{3} x+\left(\log _{3} x\right)^{2}+1\right)}$
We know $\log _{a} b=\frac{1}{\log _{b} a}$
$A=\left|\log _{3} x+1\right|$
and
$B=\sqrt{\left(\left(\log _{3} \frac{x}{3}\right) \frac{1}{3}+\frac{1}{3}\left(\log _{x} \frac{3}{x}\right)\right) \log _{3} x^{3}}$
$B=\sqrt{\frac{3}{3}\left[\log _{3} x-1+\log _{x} 3-1\right] \log _{3} x}$
$B=\sqrt{\left(\left(\log _{3} x\right)^{2}-2 \log _{3} x+1\right)}$
$B=\sqrt{\left(\log _{3} x-1\right)^{2}}=\left|\log _{3} x-1\right|$
$A+B=2 \Rightarrow\left|\log _{3} x+1\right|+\left|\log _{3} x-1\right|=2$
$\log _{3} x \geq 1 \Rightarrow x \geq 3$
$A+B \Rightarrow \log _{3} x+1+\log _{3} x-1$
$=2 \log _{3} x=2$
$\log _{3} x=1 \Rightarrow x=3$
$x \geq 3$ and $x=3 \Rightarrow x=3$
if $\log _{3} x<1$ and $\log _{3} x+1>0$
$\Rightarrow x<3$ and $x>\frac{1}{3}$
$A+B \Rightarrow \log _{3} x+1-\left(\log _{3} x-1\right)$
$=\log _{3} x+1-\log _{3} x+1=2=2$ (always)
so $x \in\left(\frac{1}{3}, 3\right)$
$\log _{3} x \leq-1 x \leq \frac{1}{3}$
$A+B=-\left(\log _{3} x+1\right)-\left(\log _{3} x-1\right)$
$=-\log _{3} x-1-\log _{3} x+1=-2 \log _{3} x=2$
$\Rightarrow \log _{3} x=-1 \Rightarrow x=3^{-1}=\frac{1}{3}$
$x \geq \frac{1}{3}$ and $x=\frac{1}{3} \Rightarrow x=\frac{1}{3}$
so $x=\left[\frac{1}{3}, 3\right]-\{1\}$
$x \neq 1$ because base can't be 1

EXERCISE - II JEE ADVANCED

Sol. $12^{\sqrt{x}+\sqrt{y}}=256 \& \log _{10} \sqrt{x y}-\log _{10} 1.5=1$

$$
\Rightarrow 2^{\sqrt{x}+\sqrt{y}}=256=2^{8}
$$

$\Rightarrow \sqrt{x}+\sqrt{y}=8$
and $\log _{10} \sqrt{x y}=1+\log _{10} 1.5$
$=\log _{10} 10+\log _{10} 1.5$
$\log _{10} \sqrt{x y}=\log _{10}(10 \times 1.5)=\log _{10} 15$
$\Rightarrow \sqrt{x y}=15 \Rightarrow x y=15^{2}=225$
$|\sqrt{x}-\sqrt{y}|=\sqrt{(\sqrt{x}+\sqrt{y})^{2}-4 \sqrt{x y}}$
$=\sqrt{8^{2}-4 \times 15}=\sqrt{64-60}$
$|\sqrt{x}-\sqrt{y}|=\sqrt{4}=2$
$\sqrt{x}+\sqrt{y}=8$
\Rightarrow if $\sqrt{x}>\sqrt{y} \Rightarrow(x, y)=(25,9)$
\Rightarrow if $\sqrt{x}<\sqrt{y} \Rightarrow(x, y)=(9,25)$

$$
\Rightarrow c^{2}=a^{2}+b^{2}
$$

$$
\Rightarrow c^{2}-b^{2}=a^{2}
$$

$\frac{\log _{b+c} a+\log _{c-b} a}{\log _{b+c} a \cdot \log _{c-b} a}=\frac{\frac{\log _{a} a}{\log _{a} b+c}+\frac{\log _{a} a}{\log _{a} c-b}}{\frac{\log _{a} a}{\log _{a} b+c} \frac{\log _{a} a}{\log _{a} c-b}}$
$=\left(\log _{a}(c-b)+\log _{a}(b+c)\right)=\log _{a}\left(c^{2}-b^{2}\right)=2$

Sol. $3 B, C, P$, and L are positive number
$\therefore \log (B . L)+\log (B . P)=2 ;$
$\log (\mathrm{D} . \mathrm{L})+\log (\mathrm{P} . \mathrm{C})=3$
and $\log (C . B)+\log (C . L)=4$
add all the equations \Rightarrow
$\log [B . L . B . P . P . L . P . C . C . B . C . L]=2+3+4=9$
$\log (B C P L)^{3}=9$
$3 \log B C P L=9$
$\log B C P L=\frac{9}{3}=3$
$B C P L=10^{3}$
Sol. $4 \frac{\log _{12}\left(\log _{8}\left(\log _{4} x\right)\right)}{\log _{5}\left(\log _{4}\left(\log _{y}\left(\log _{2} x\right)\right)\right)}=0$
$c<y<b, y \neq a$
where ' b ' is as large as possible and ' c ' is as small as possible.
$(a+b+c)=7$
$\Rightarrow \log _{12}\left(\log _{8}\left(\log _{4} x\right)\right)=0$
$\Rightarrow \log _{8}\left(\log _{4} x\right)=1=\log _{8} 8$
$\log _{4} x=8 \Rightarrow x=4^{8}=2^{2 \times 8}=2^{16}$
and
$\log _{5}\left(\log _{4}\left(\log _{y}\left(\log _{2} y\right)\right)\right) \neq 0$
$\Rightarrow \log _{5}\left(\log _{4}\left(\log _{y}\left(\log _{2} 2^{16}\right)\right)\right) \neq 0$
$\Rightarrow \log _{5}\left(\log _{4}\left(\log _{y} 16\right)\right) \neq 0, y \neq 1$
$\Rightarrow \log _{4}\left(\log _{y} 16\right) \neq 1$
$\log _{\mathrm{y}} 16 \neq 4 \Rightarrow \log _{\mathrm{y}} 16=\frac{1}{\log _{16} y}$
$\Rightarrow \log _{2^{4}} y \neq \frac{1}{4}$
$\frac{1}{4} \log _{2} y \neq \frac{1}{4} \Rightarrow \log _{2} y \neq 1 \Rightarrow y \neq 2$
$\log _{4}\left(\log _{y} 16\right) \neq 0$
$\Rightarrow \log _{y} 16 \neq 1$
$\log _{16} y \neq 1 \Rightarrow y \neq 16$
$\log _{4}\left(\log _{y} 16\right)>0$
$\log _{y} 16>0 \Rightarrow y<16$
$y>1$
$\log _{y} 16>0$
$a=2, b=16, c=1$
$a+b+c=2+16+1=19$
Sol. 5 The expression, $\log _{\mathrm{p}} \log _{\mathrm{p}} \mathrm{n}$ radical sign where $p \geq 2, P \in N$, when simplified is independent of p but dependent on n and negative

Sol. $6 \mathrm{~N}=\frac{1+2 \log _{3} 2}{\left(1+\log _{3} 2\right)^{2}}+\log _{6}^{2} 2$
$N=\frac{1+2 \log _{3} 2}{\left(1+\log _{3} 2\right)^{2}}+\left(\frac{\log _{3} 2}{\log _{3} 6}\right)^{2}$
assume $\log _{3} 2=y$
$\Rightarrow \mathrm{N}=\frac{1+2 \mathrm{y}}{(1+\mathrm{y})^{2}}+\frac{\mathrm{y}^{2}}{\left(\log _{3} 2+\log _{3} 3\right)^{2}}$
$N=\frac{1+2 y}{(1+y)^{2}}+\frac{y^{2}}{(1+y)^{2}}=\frac{y^{2}+2 y+1}{(1+y)^{2}}$
$N=\frac{(1+y)^{2}}{(1+y)^{2}}=1$
and $\pi=3.147>3$
and $7>6$
so $\log _{3} \pi>1$
and $\log _{7} 6<1$
Sol. $82^{2 x}-8.2^{x}=-12$
assume $2^{x}=y$
$y^{2}-8 y=-12$
$(y-6)(y-2)=0$
$\Rightarrow y=6$ or $y=2$
$2^{x}=6 ; 2^{x}=2^{1}$
$x \log _{10} 2=\log 6=\log (2 \times 3)$
$x=\frac{\log 2+\log 3}{\log 2}=1+\frac{\log 3}{\log 2} ; x=1$

Sol. 9 Statement-I

$\sqrt{\log _{x} \cos (2 \pi x)}$ is a meaning quantity only if $x \in\left(0, \frac{1}{4}\right) \cup\left(\frac{3}{4}, 1\right)$
$\cos 2 \pi x>0$
$\frac{\pi}{2}>2 \pi x>0$
$\frac{1}{4}>x>0$
and $x \neq 1, x>0$
$\frac{3 \pi}{2}<2 \pi x<2 \pi$
$\Rightarrow \frac{3}{4}<x<1$

So $x \in\left(0, \frac{1}{4}\right) \cup\left(\frac{3}{4}, 1\right)$

But also $\log _{x} \cos (2 \pi x)>0=\log _{x} 1$
$\cos 2 \pi x>1$ which is never possible
so statement-I is false

Statement-II If the number $\mathrm{N}>\mathrm{O}$ and the base of the logarithm b(greater than zero not equal to)

Both lie on the some side of unity than $\log _{b} N$ > 0 and if they lie on the different side of unity then $\log _{b} \mathrm{~N}<0$ statement-II is true

Sol. 10 Statement-I
$\log _{2}(2 \sqrt{17-2 x})=1+\log _{2}(x-1)$ has a solution
$\Rightarrow 1+\log _{2}(\sqrt{17-2 x})=1+\log _{2}(x-1)$
$\Rightarrow \sqrt{17-2 x}=(x-1)$

Square both side
$\Rightarrow 17-2 \mathrm{x}=(\mathrm{x}-1)^{2}=\mathrm{x}^{2}-2 \mathrm{x}+1$
$\Rightarrow 17=x^{2}+1 \Rightarrow x^{2}=16 \Rightarrow x= \pm 4$
$\Rightarrow x \neq-4$ is not a solution satisfied equation in statement-I
so $x=4 . x$ has a solution

Statement-II

"change of base in logarithm is possible" which is true but not the correct explanation for statement-I

Sol. $113^{x}(0.333 \ldots .)^{(x-3)} \leq\left(\frac{1}{27}\right)^{x}$
$\Rightarrow 3^{x}\left(\frac{1}{3}\right)^{x-3} \leq\left(\frac{1}{3^{3}}\right)^{x}=\left(\frac{1}{3}\right)^{3 x}$
$\Rightarrow 3^{x} 3^{-(x-3)}=3^{x} \cdot 3^{3-x} \leq\left(\frac{1}{3}\right)^{3 x}$
$3^{3}=27 \leq\left(\frac{1}{3}\right)^{3 x}=3^{-3 x}$
$3 \leq-3 x \Rightarrow-x \geq 1 \Rightarrow x \leq-1$
$x \in[-\infty,-1]$
Sol. $122(25)^{x}-5(10)^{x}+2\left(4^{x}\right) \geq 0$
$2\left(5^{2}\right)^{x}-5(5 \times 2)^{x}+2\left(2^{2}\right)^{x} \geq 0$
$\Rightarrow 2(5)^{2 x}-5(5)^{x}(2)^{x}+2\left(2^{2}\right)^{x} \geq 0$
$\Rightarrow 5^{2 x}-\frac{5}{2} 5^{x} 2^{x}+2^{2 x} \geq 0$
when $a^{2}+b^{2}=(a-b)^{2}+2 a b$
$\Rightarrow\left(5^{x}-\frac{5}{4} 2^{x}\right)^{2}-\frac{25}{16} 2^{2 x}+2^{2 x} \geq 0$
$\Rightarrow\left(5^{x}-\frac{5}{4} 2^{x}\right)^{2}>\left(\frac{25-16}{16}\right) 2^{2 x}=\frac{9}{16} 2^{2 x}$
\Rightarrow root square both sides
$\Rightarrow\left|5^{x}-\frac{5}{4} 2^{x}\right| \geq \frac{3}{4} 2^{x}$
if $5^{x}-\frac{5}{4} 2^{x} \geq 0$
$\Rightarrow 5^{x} \geq \frac{3}{4} 2^{x}+\frac{5}{4} 2^{x}=\frac{8}{4} 2^{x}=2.2^{x}$
$\Rightarrow 5^{x} \geq 2.2^{x}=2^{1+x}$
$\Rightarrow 5 \geq 2^{\frac{1+x}{x}}$
assume $5=2^{y}$
$\Rightarrow y \geq \frac{1+x}{x} \Rightarrow y x \geq 1+x$
$\Rightarrow y x-x \geq 1 \Rightarrow x \geq \frac{1}{y-1}$

Where $\mathrm{y}<3$ and $\mathrm{y}>2$
$\left(\because 2^{3}>5\right.$ and $\left.2^{2}<5\right)$

Sol. $13\left(\frac{1}{5}\right)^{\frac{2 x+1}{1-x}}>\left(\frac{1}{5}\right)^{-3}$
$\frac{2 x+1}{1-x}<-3$
$2 x+1<-3(1-x)=-3+3 x($ if $(1-x)>0)$
$\Rightarrow 2 \mathrm{x}+1<-3+3 \mathrm{x}$
$\Rightarrow 3 x-2 x>1+3=4$
$\Rightarrow x>4$
$\Rightarrow x>4$ and $x<1$
no solution
if $x>1 \Rightarrow 1-x<0$
$\Rightarrow \frac{2 \mathrm{x}+1}{1-\mathrm{x}}<-3$
$\Rightarrow \frac{2 x+1}{1}>-3(1-x)=3 x-3$
$\Rightarrow 3 x-2 x<1+3=4$
$\Rightarrow \mathrm{x}<4$ and $\mathrm{x}>1 \Rightarrow \mathrm{x} \in(1,4)$
Sol. $14 \log _{x}^{3} 10-6 \log _{x}^{2} 10+11 \log _{x} 10-6=0$
assume $\log _{x} 10=y$
$\Rightarrow y^{3}-6 y^{2}+11 y-6=0$
$f(y)=y^{3}-6 y^{2}+11 y-6$
$\frac{d f(y)}{d y}=3 y^{2}-12 y+11 \rightarrow 0$
$\Rightarrow y=\frac{12 \pm \sqrt{12^{2}-4 \times 3 \times 11}}{2(3)}$
$=\frac{12 \pm \sqrt{12}}{6}$
There is maxima and minima at
$y=\frac{12 \pm \sqrt{12}}{6}=2 \pm \frac{\sqrt{6} \sqrt{2}}{6}$
$=2 \pm \frac{\sqrt{2}}{6}=2 \pm \frac{1}{\sqrt{3}}$
at $y=2+\frac{1}{\sqrt{3}}$
$y^{2}-6 y^{2}+11 y-6$ is negative
and at $\mathrm{y}=2-\frac{1}{\sqrt{3}}$,
equation $y^{3}-6 y^{2}+11 y-6$ is positive
so there is total 3 solution for this equation

Sol. $15 x^{\log _{3} x^{2}+\left(\log _{3} x\right)^{2}-10}=\frac{1}{x^{2}}=x^{-2}$
$x=1\left((1)^{\log _{3} x^{2}+\left(\log _{3} x\right)^{2}-10}=1\right.$
or $\log _{3} x^{2}+\left(\log _{3} x\right)^{2}-10=-2$
assume $\log _{3} x=y \rightarrow 2 y+y^{2}-10=-2$
$y^{2}+2 y-10+2=y^{2}+2 y-8=0$
$(y+4)(y-2)=0$
$y=-4$ or $y=2$
$x=3^{-4}=\frac{1}{81} ; x=9$
$x=\left\{1,9, \frac{1}{81}\right\}$
Sol. $16 \frac{(\ell \mathrm{nx})^{2}-3 \ln \mathrm{x}+3}{\ell \mathrm{nx}-1}<1$
If $\ell \mathrm{n} x-1>0 \Rightarrow \ell n x>1 \Rightarrow x>e$
$\Rightarrow(\ell n x)^{2}-3 \ln x+3<1[(\ln (x))-1]$
assume $\ln x=y$
$\Rightarrow y^{2}-3 y+3<y-1$
$\Rightarrow y^{2}-3 y-y+3+1<0$
$\Rightarrow \mathrm{y}^{2}-4 \mathrm{y}+4<0$
$\Rightarrow(y-2)^{2}<0$ Oalways false
So if $\ell \mathrm{n} x<1 \Rightarrow \mathrm{x}<\mathrm{e}$ and $\mathrm{x}>0$
$y^{2}-3 y+3>(y-1)$
$y^{2}-3 y-y+3+1>0$
$y^{2}-4 y+4>0$
$\Rightarrow(\mathrm{y}-2)^{2}>0$ always true
so $x \in(0, e)$

Sol. 17

$a=\left(\log _{7} 81\right)\left(\log _{6551} 625\right)\left(\log _{125216}\right)\left(\log _{12962401}\right)$
$a=\left(\log _{7} 3^{4}\right)\left(\log _{3^{8}} 5^{4}\right)\left(\log _{5^{5}} 6^{3}\right)\left(\log _{6^{4}} 7^{4}\right)$
$a=4\left(\log _{7} 3\right) \frac{4}{8}\left(\log _{3} 5\right)\left(\log _{5} 6\right)\left(\frac{3}{3}\right)\left(\frac{4}{4}\right) \log _{6} 7$
$a=\frac{2 \log 3}{\log 7} \frac{\log 5}{\log 3} \frac{\log 6}{\log 5} \frac{\log 7}{\log 6}=2$
and $b=$ sum of roots of the equation

$$
\begin{aligned}
& x^{\log _{2} x}=(2 x)^{\log _{2} \sqrt{x}} \\
& x^{\log _{2} x}=(2 x)^{\log _{2} x^{1 / 2}}
\end{aligned}
$$

take logarithm (base x) both sides
$\log _{x} x^{\log _{2} x}=\log _{x}(2 x)^{\log _{2} x^{1 / 2}}$
$\left(\log _{2} x\right)(1)=\log _{2} x^{1 / 2}\left[\log _{x}(2 x)\right]$
$\log _{2} x=\frac{1}{2} \log _{2} x\left(\log _{x} 2+1\right)$
$\log _{2} x=0 \Rightarrow x=1$ or $2=\log _{x} 2+1$
$\log _{x} 2=1 \Rightarrow x=2$
$x_{1}+x_{2}=1+2=3$
$b=3$
and $\mathrm{c}=$ sum of all natural solution of equation
$|x+1|+|x-4|=7$

If $x<-1 \rightarrow|x+1|=-1-x$
$|x-4|=4-x$
\Rightarrow eq. $\rightarrow-1-x+4-x=3-2 x=7$
$\Rightarrow 2 x=3-7=-4 \Rightarrow x=-\frac{4}{2}=-2$
If $x>4 \rightarrow|x+1|=x+1$
$|x-4|=x-4$
Eq. $\rightarrow x+1+x-4=2 x-3=7$
$\Rightarrow 2 \mathrm{x}=\frac{7+3}{1}=10 \Rightarrow 2 \mathrm{x}=10 \Rightarrow \mathrm{x}=\frac{10}{2}=5$
if $-1<x<4$
$\Rightarrow|\mathrm{x}+1| \rightarrow 1+\mathrm{x}$
$|x-4| \rightarrow 4-x$
$\Rightarrow 1+x+4-x=5 \neq 7$ so no solution for this region $\rightarrow x=5$ and -2
but -2 is not natural no.
so $\mathrm{c}=5$
$a+b=2+3=5$
$(a+b) \div c=\frac{5}{5}=1$

Sol. 18 (A)

$\sqrt{3 \sqrt{x}-\sqrt{7 x+\sqrt{4 x-1}}} \sqrt{2 x+\sqrt{4 x-1}}$

$$
\sqrt{3 \sqrt{x}+\sqrt{7 x+\sqrt{4 x-1}}}=13
$$

$$
\sqrt{(3 \sqrt{x}-\sqrt{7 x+\sqrt{4 x-1}})(3 \sqrt{x}+\sqrt{7 x+\sqrt{4 x-1}})}
$$

$$
(\sqrt{2 x+\sqrt{4 x-1}})
$$

$=\sqrt{(3 \sqrt{x})^{2}-(\sqrt{7 x+\sqrt{4 x-1}})^{2}(2 x+\sqrt{4 x-1})}$
$=\sqrt{(9 x-7 x+\sqrt{4 x-1})(2 x+\sqrt{4 x-1})}$
$=\sqrt{(2 x+\sqrt{4 x-1})(2 x+\sqrt{4 x-1})}$
$=2 x+(\sqrt{4 x-1})=13$
If $13>2 x$ then
$\sqrt{4 x-1}=13-2 x$
square
$\Rightarrow 4 x-1=(13-2 x)^{2}=169+4 x^{2}-2.13(2 x)$
$4 x^{2}-52 x-4 x+169+1=0$
$\Rightarrow 4 x^{2}-56 x+170=0$
$\Rightarrow x=\frac{56 \pm \sqrt{56^{2}-4(170) 4}}{8}$
$x=\frac{56 \pm \sqrt{416}}{8}=7 \pm \frac{4 \sqrt{26}}{8}=\frac{7 \pm \sqrt{26}}{2}$
but $13>2 x \Rightarrow x<6.5$
so $x=7-\frac{\sqrt{26}}{2}$ which is less than 6.5
(b) $P(x)=x^{7}-3 x^{5}+x^{3}-7 x^{2}+5$
$Q(x)=x-2$
Remainder $\frac{P(x)}{Q(x)}$
$Q(x)=0$ at $x=2$
So $P(2)=2^{7}-3(2)^{5}+2^{3}-7(2)^{2}+5=17$
(c)

area of triangle is

$$
\text { Area }=a^{2}+b^{2}-c^{2}
$$

$b^{2}=a^{2}+c^{2}$
so area $=a^{2}+\left(a^{2}+c^{2}\right)-c^{2}$
$=\frac{1}{2} \times a \times c=\frac{a c}{2}$
$\Rightarrow 2 \mathrm{a}^{2}=\frac{\mathrm{ac}}{2} \Rightarrow 4=\frac{\mathrm{ac}}{\mathrm{a}^{2}}=\frac{\mathrm{a}}{\mathrm{c}}$
\Rightarrow ratio $=\frac{\mathrm{c}}{\mathrm{a}}=4$
(D)a, b, c $\in N$
$\therefore\left((4)^{1 / 3}+(2)^{1 / 3}-2\right)$

$$
\left(a(4)^{1 / 3}+b(2)^{1 / 3}+c\right)=20
$$

$$
=\left(2^{2 / 3}+2^{1 / 3}-2\right)\left(a 2^{2 / 3}+b 2^{1 / 3}+c\right)=20
$$

$$
\Rightarrow \mathrm{a}\left(2^{4 / 3}+2-2.2^{2 / 3}\right)+\mathrm{b}\left[2^{3 / 3}+2^{2 / 3}-2.2^{1 / 3}\right]
$$

$$
+c\left(2^{2 / 3}+2^{1 / 3}-2^{3 / 3}\right)=20
$$

$$
2^{1 / 3}(2 a-2 b+c)+2^{3 / 3}(a+b-c)
$$

$$
+2^{2 / 3}(-2 a+b+c)=20
$$

$$
a+b-c=\frac{20}{2}=10
$$

Empower your JEE Main \& Advanced Preparation with PLANGESS PRODUCTS

\& Preplane

Born from the stables of Plancess, PrepLane is an online test-preparation platform designed to give students all the practice they'll need to score better in a variety of entrance examinations including JEE, AIPMT and other examinations. Built with the idea of providing a personalised learning experience to every student, Preplane leverages cutting-edge analytics \& adaptive learning technology to craft a custom learning experience for every learner.

FOUNDATION COURSE

Comprehensive package for IX \& X aspirants prepared by National Olympiad Toppers.

- Study Material • Video Lectures - Assessment

AIPMT COURSE

A comprehensive self-study package for Pre-medical aspirants prepared by Qualified Medical Professionals and Top IITians.

- Study Material • Video Lectures • Assessment

JEE MAIN \& ADVANCED COURSE

A comprehensive self-study package for Engineering aspirants prepared by Top 100 JEE Rankers.

- Study Material • Video Lectures • Assessment
\qquad

To know more
© 022-6604-3411
Qsupport@plancess.com
© www.Plancess.com

Plancess EduSolutions Pvt. Ltd. A005/A006, Boomerang, Chandivali - Chandivali Farm Rd, Andheri (East), Mumbai - 400072, India,

