

Chapter Notes

CHEMISTRY

Elements, Compounds and Mixtures

Classification of Matter

Matter may be broadly classified into Elements, Compounds and Mixtures.

Element

- An element is a pure substance composed of only one kind of atom. Examples: C, H, O, Na, Ca, N etc.
- An element cannot be broken down into two or more simple substances by any physical or chemical means.

Ca Fe	0 C	Sb Bi	Ne He
Calcium Iron	Oxygen Carbon	Antimony Bismuth	Neon Helium
Metallic elements	Non-metallic elements	Metalloids	Noble gases

Occurrence of Elements

Elements occur naturally in the Earth's crust and in the atmosphere. They can also be made by artificial means.

Elements occur or are made up of

- Single atoms
- Examples: All the inert gases; Helium (He), Neon (Ne), Argon (Ar), Krypton (Kr).
- Two atoms (diatomic molecules)

Examples: All gases, except inert gases, are diatomic; Hydrogen (H₂), Oxygen (O₂), Nitrogen (N₂) etc.

- Three atoms (triatomic molecules) Example: Ozone O₃
- More than three atoms (polyatomic molecules) Examples: P₄, S₈

Characteristics of an Element

- An element is made up of only one kind of atom.
- An element is a pure and homogeneous substance.
- An element has fixed melting and boiling points.
- An atom is the smallest particle of an element which takes part in a chemical reaction.
- An element may chemically react with another element or compound.
- An element can occur in the solid, liquid or gaseous state.

The molecules are made up of one or more atoms of the same or different elements.

Classification of Elements

Compound

- A compound is a pure substance composed of two or more elements combined chemically in a fixed proportion by mass.
- The properties of compounds are different from the properties of their constituent elements. Examples: H₂O, CO₂ etc.

Which is the smallest part of a compound whose properties are same as those of the compound?

The smallest part of a compound is a molecule. All the molecules of a compound are alike and have properties similar to those of the compound.

Compound	Molecular formula	Composition of molecule	Diagrammatic representation
Water	H₂O	Two atoms of Hydrogen and one atom of Oxygen	Element Element Compound H + 0 \rightarrow H_20 [Hydrogen] [Oxygen] [Water]
Iron sulphide	FeS	One atom of Iron and one atom of Sulphur	Element Element Compound Fe + S - FeS [Iron] [Sulphur] [Iron sulphide]

Characteristics of Compounds

- Components in a compound are present in a definite proportion.
- They have a homogeneous composition.
- Particles in a compound are of one kind.
- A compound is made up of one or more atoms of the same or different elements.
- In a compound the elements are present in a fixed ratio by mass.
- A compound can be divided into simpler substances by a chemical process.
- The physical and chemical properties of a compound are completely different from those of its constituents.

A comparative study between Elements and Compounds

	Element		Compound
1.	It is a pure substance which cannot be converted into simpler substances by any physical or chemical means.	1.	It is a pure substance made up two or more elements combined chemically in a fixed ratio.
2.	It is made up of only one kind of atoms.	2.	It is made up of two or more different kinds of atoms.
3.	The molecules are made up of one or more atoms.	3.	The molecules are made up of two or more atoms.
4.	Elements cannot be broken down into two or more simpler substances by any physical or chemical means.	4.	A compound can be divided into simpler substances only by chemical means.
5.	Elements have their own set of properties. Example: Iron is grey coloured and attracted by a magnet. Sulphur is yellow coloured and soluble in carbon disulphide.	5.	Properties of compounds are different from their constituent elements. Example: Iron sulphide is a black substance which is not attracted by a magnet and insoluble in carbon disulphide. While its constituent elements, Iron is grey coloured and attracted by a magnet. Sulphur is vellow coloured and
			soluble in carbon disulphide.

Mixtures

- A mixture is defined as matter composed of two or more substances whose particles are in contact but are not chemically combined and have not lost their individual properties.
- The properties of a mixture vary according to the proportions of the components present in it.
- Examples: Milk, Lemonade, Tea, Petroleum etc.

Types of Mixtures

Homogeneous Mixtures

A mixture which has uniform composition and properties throughout its mass is called a homogeneous mixture. Examples: Sugar solution, salt solution.

Heterogeneous Mixture

A mixture which has different composition and properties in different parts of their mass is called a heterogeneous mixture. Examples: Sand mixed with salt, sugar in oil.

Types of mixture	Homogeneous	Heterogeneous
Solid in solid	Alloys (Bronze - Cu, Zn, Sn)	Gun powder (charcoal, sulphur, nitre)
Solid in liquid	lodine in alcohol, sugar in carbon disulphide, sugar in water, salt in water	Sugar in oil, sand in water
Liquid in solid	Amalgam (Hg + Au)	Water in sponge
Liquid in liquid	Methanol in water, acetone in water	Oil in water, kerosene in water
Gas in liquid	HCI in water	Helium in water
Liquid in gas	Moisture in air	Mist, fog
Gas in gas	Pure air	Air in industries

A comparative study between Compounds and Mixtures

Compound	Mixture
 It is obtained by the chemical combination of more than one element. 	 It is obtained by the physical combination of either elements, compounds or both.
2. The composition of elements present in a compound is fixed.	2. The composition of elements present in a mixture is not fixed.
3. The properties of a compound are different from those of its elements.	 It shows the properties of all its constituent elements.
 Its constituents can be separated by using only chemical and electrochemical methods. 	 Its constituents can be separated using physical methods.
5. A compound is always homogeneous in nature.	5. The mixtures can be homogeneous or heterogeneous.
Example:	Example:

Methods of Separation

Separation of Solid-Solid Mixtures

Magnetic separation	Technique
To separate the mixture of	 Take the mixture X + Y in a dish and move a magnet over it.
magnetic solid X + non-	Separation of Compounds
magnetic solid Y.	 Magnetic solid X is attracted to the magnet.
	 Non-magnetic solid Y remains in the dish below.
	Example: Mixture of iron filings and sulphur
Solvent extraction method	
To separate the mixture of	Take a backer containing colvent
Incoluble colid V . Soluble	Take a beaker containing solvent.
	• Add the mixture X + Y to the beaker.
Solid Y.	• Stir the mixture well till the soluble component dissolves.
	Filter the components of the beaker.
	Separation of Compounds
	Insoluble component X remains on the filter paper.
	Soluble component Y is obtained on evaporation.
	Examples: NaCI + sand; carbon + sulphur
Chromatography – For	Technique
Complex Mixtures	• Place a spot of ink with the help of a capillary tube in the centre of a
To separate the mixture of	base line about 2–3 cm away from the lower edge of a paper.
different solid constituents in	• Dry the spot and hang the paper in a glass jar with its lower end
a liquid constituent.	immersed in the solvent.
	Separation of Compounds
	• The solvent runs over the spot and carries the components to a
	distance along the paper indicated by coloured spots (the solid
	constituents of dves A. B. C. D).
	Example: Different dyes in ink

Separation of Solid-Liquid Mixtures

Solid-liquid mixtures			
Filtration Sedimentation Evaporation Distillation A + B A + B A + B A + B A + B A + B A + B A + B Insoluble Liquid Insoluble Liquid Should Liquid Insoluble Liquid Insoluble Liquid Should Liquid Should Liquid Invisition Should Component In component In component Iquid B 'filtrate' settles remains liquid B vaporizes liquid B vaporizes filtered left down above left on heating remains on out behind [sediment] behind behind con- densed<			
Method of Separation	Method of Separation		
Filtration	Technique		
To separate the mixture of	• Place a wet folded filter paper in a funnel clamped above a		
insoluble solid X from liquid	beaker.		
component Y.	• Pour the mixture X + Y carefully through it.		
	Separation of Compounds		
	• Insoluble solid X remains on the filter paper. It is then dried and		
	recovered.		
	• Liquid component Y remains behind in the lower beaker.		
	Example:		
	Chalk + Water		
Sedimentation and	Technique		
Decantation	• Take the mixture X + Y in a beaker containing water.		
Insoluble solid X from liquid	• Keep the contents aside for a while to let it settle down.		
component Y.	Separation of Compounds		
	Insoluble component X (sediment) settles down.		
	• Upper liquid Y is decanted/poured out into another beaker.		
	Example:		
	Sand + Water		

Evaporation	Technique
To separate the mixture of	• Place the mixture X + Y in an evaporating dish. Heat the dish
soluble solid X from liquid	carefully on a sand bath.
component Y.	• Adjust the flame to prevent the solid which is left behind in the
	dish from spurting out.
	Separation of Compounds
	Soluble solid X in the dish is recovered on evaporation.
	Liquid component Y is lost as water vapour.
	Example:
	Salt water solution
Distillation	Technique
To separate the mixture of	• Add the mixture X + Y to the flask A of the distillation
soluble solid X from liquid	apparatus.
component Y.	Carefully heat the flask.
	The mixture evaporates and later condenses.
	Separation of Compounds
	• Solid component X remains in the flask A after evaporation.
	• Liquid component Y gets collected in the receiver B after
	condensation.

Separation of Liquid-Liquid Mixtures

	· · ·	
Fractional distillation	Technique	
To separate the mixture of	• The mixture X + Y is kept in a distillation flask A attached with a	
miscible liquid X having lower	fractionating column of glass beads.	
boiling point and miscible	The flask is then carefully heated.	
liquid Y with higher boiling	• The mixture first evaporates and later gets condensed. The glass	
point.	beads present in the fractional column provide larger surface area	
	for the vapours to cool down.	
	• This technique is used to separate the mixtures having their	
	temperature difference less than 30°C.	
	Separation of Compounds	
	• Liquid with the higher boiling point Y remains in the flask A after	
	condensation.	
	• Liquid with the lower boiling point X gets collected in the flask B	
	after condensation.	
	Example: Benzene + Toluene; Water + Carbon tetrachloride	