

MATHS

$$(a+b)^2$$

$$a^2+2ab+b^2$$

Quadratic Equations

1. Introduction to Quadratic equation

If $p(x)$ is a quadratic polynomial, then $p(x) = 0$ is called a **quadratic equation**.

The general or standard form of a quadratic equation, in the variable x , is given by $ax^2 + bx + c = 0$, where a, b, c are real numbers and $a \neq 0$.

2. Roots of the quadratic equation

- The value of x that satisfies an equation is called the **zeroes** or **roots** of the equation.
- A real number α is said to be a solution/root of the quadratic equation $ax^2 + bx + c = 0$ if $a\alpha^2 + b\alpha + c = 0$.
- A quadratic equation has **at most two roots**.

3. A quadratic equation can be solved by following algebraic methods:

- Splitting the middle term (factorization)
- Completing squares
- Quadratic formula

4. Splitting the middle term (or factorization) method

- If $ax^2 + bx + c$, $a \neq 0$, can be reduced to the product of two linear factors, then the roots of the quadratic equation $ax^2 + bx + c = 0$ can be found by equating each factor to zero.
- Steps involved in solving quadratic equation $ax^2 + bx + c = 0$ ($a \neq 0$) by **splitting the middle term** (or factorization) method:

Step 1: Find the product ac .

Step 2: Find the factors of 'ac' that add to up to b , using the following criteria:

- If $ac > 0$ and $b > 0$, then both the factors are positive.
- If $ac > 0$ and $b < 0$, then both the factors are negative.
- If $ac < 0$ and $b > 0$, then larger factor is positive and smaller factor is negative.
- If $ac < 0$ and $b < 0$, then larger factor is negative and smaller factor is positive.

Step 3: Split the middle term into two parts using the factors obtained in the above step.

Step 4: Factorize the quadratic equation obtained in the above step by grouping method. Two factors will be obtained.

Step 5: Equate each of the linear factors to zero to get the value of x .

5. Completing the square method

- Any quadratic equation can be converted to the form $(x + a)^2 - b^2 = 0$ or $(x - a)^2 + b^2 = 0$ by adding and subtracting the constant term. This method of finding the roots of quadratic equation is called the method of completing the square.
- The steps involved in solving a quadratic equation by **completing the square**, are as follows:

Step 1: Make the coefficient of x^2 unity.

Step 2: Express the coefficient of x in the form $2 \times x \times p$.

Step 3: Add and subtract the square of p .

Step 4: Use the square identity $(a + b)^2$ or $(a - b)^2$ to obtain the quadratic equation in the required form $(x + a)^2 - b^2 = 0$ or $(x - a)^2 + b^2 = 0$.

Step 5: Take the constant term to the other side of the equation.

Step 6: Take the square root on both the sides of the obtained equation to get the roots of the given quadratic equation.

6. Quadratic formula

The roots of a quadratic equation $ax^2 + bx + c = 0$ ($a \neq 0$) can be calculated by using the **quadratic formula**:

$$\frac{-b + \sqrt{b^2 - 4ac}}{2a} \text{ and } \frac{-b - \sqrt{b^2 - 4ac}}{2a}, \text{ where } b^2 - 4ac \geq 0$$

If $b^2 - 4ac < 0$, then equation does not have real roots.

7. Discriminant of a quadratic equation

For the quadratic equation $ax^2 + bx + c = 0$, $a \neq 0$, the expression $b^2 - 4ac$ is known as **discriminant**.

8. Nature of the roots of a quadratic equation:

- If $b^2 - 4ac > 0$, the quadratic equation has **two distinct real roots**.
- If $b^2 - 4ac = 0$, the quadratic equation has **two equal real roots**.
- If $b^2 - 4ac < 0$, the quadratic equation has **no real roots**.

9. There are many equations which are not in the quadratic form but can be reduced to the quadratic form by simplifications.

10. Application of quadratic equations

- The applications of quadratic equation can be utilized in solving real life problems.
- Following points can be helpful in solving word problems:
 - Every two digit number 'xy' where x is a ten's place and y is a unit's place can be expressed as $xy = 10x + y$.
 - Downstream: It means that the boat is running in the direction of the stream
Upstream: It means that the boat is running in the opposite direction of the stream
Thus, if
Speed of boat in still water is x km/h
And the speed of stream is y km/h
Then the speed of boat downstream will be $(x + y)$ km/h and in upstream it will be $(x - y)$ km/h.
 - If a person takes x days to finish a work, then his one day's work = $\frac{1}{x}$