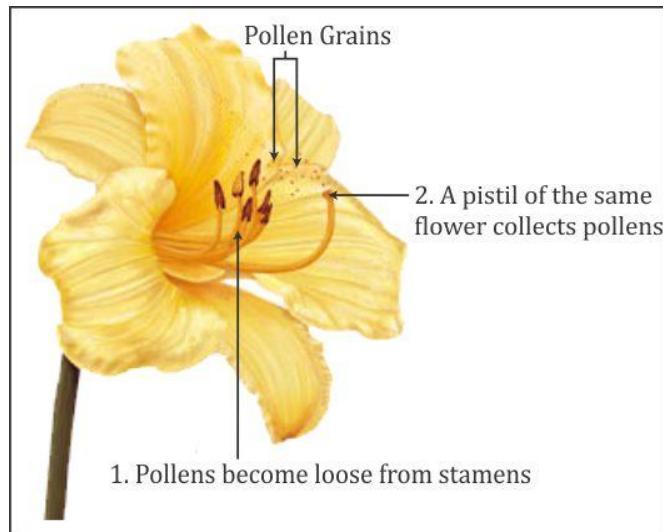


BIOLOGY


Pollination

- Pollination is the process of transfer of pollen grains from the anther of a stamen to the stigma of a carpel of a flower.

Self Pollination

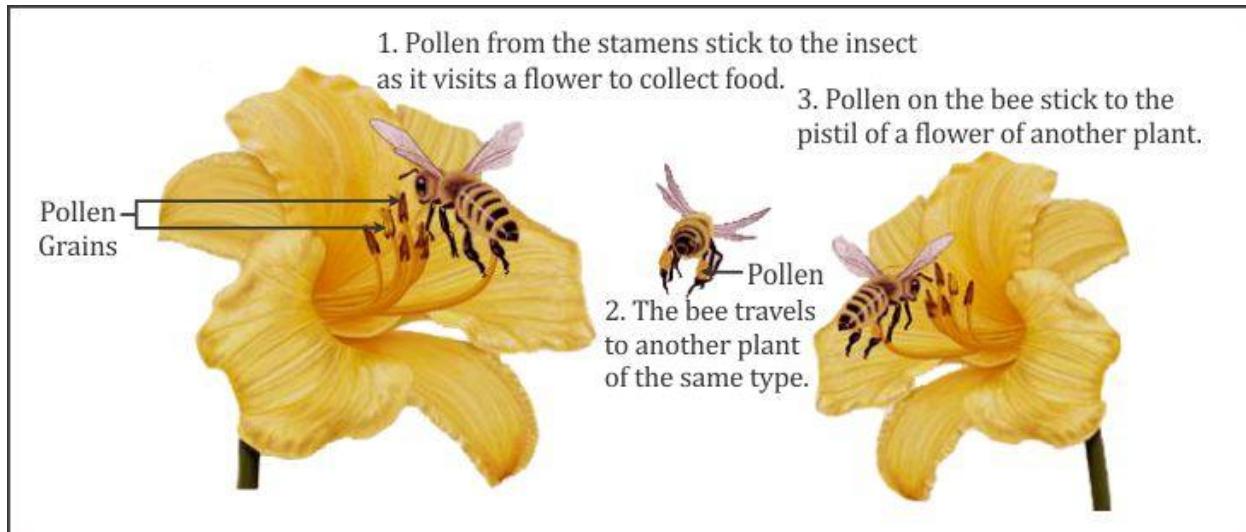
- The transfer of pollen grains from the anther of a flower to the stigma of the same flower or another flower on the same plant is called self pollination.
- Examples: Wheat, Tobacco, Pea

Self Pollination

Conditions Favouring Self Pollination

- Bisexuality, monoecious:** Bisexual, monoecious plants have both male and female reproductive parts on the same plant.
- Homogamy:** The anther and stigma of a bisexual flower mature at the same time.
- Cleistogamy:** The pollen grains pollinate the stigma of the same flower. In this case, the flowers never open.

Advantages of Self Pollination


- It is a much surer method of pollination in bisexual flowers in which the stamens and carpels mature at the same time.
- The parental characters are preserved indefinitely.
- No wastage of pollen grains occurs as even a small quantity of pollen is sufficient.
- The flowers do not have to be large and showy.
- The flowers do not have to produce scent or nectar to attract insects.
- It is economical for plants as a lot of nutrient material which would otherwise be used to produce pollen, nectar, scent, large colourful petals etc. is saved.

Disadvantages of Self Pollination

- If self pollination continues for a long period of time, generation after generation, then it may lead to the weakening of the species.
- The seeds produced through self pollination would be of a poorer quality, and they would give rise to less vigorous offspring.
- Fewer seeds are produced.
- The endosperm is minute, and thus, the seeds produce weak plants.
- The weaker and defective characters of the variety cannot be eliminated.
- It does not yield new varieties. This leads to the degradation of the plant.
- Genetic traits of the same plant with no change or intermixing are passed on with little chance of improvement from one generation to the next.

Cross Pollination

- The transfer of pollen grains from the anther of a flower on one plant to the stigma of a flower on another plant of the same species is called cross pollination.
- Examples: Hibiscus, China rose, Brinjal, Tomato, Lady finger

Cross Pollination

Conditions Favouring Cross Pollination

- **Unisexuality:** Unisexual flowers have either male or female flowers borne on a separate plant. Examples: Cucumber, Papaya
- **Self-sterility:** In this case, even if the stigma receives pollen from the anther of the same flower, the pollen germinate or undergo further growth. Examples: Ray florets of sunflower, Orchid
- **Self-poisoning:** Plants produce substances similar to antibodies that inhibit the development of pollen on their own stigma.
- **Heterostyly:** The stigma and anthers grow at different heights which does not favour self pollination. Examples: Primrose, Oxalis
- **Herkogamy:** The pollen of the flower is unable to reach the stigma of the same flower. Example: The Pansy flower has a hood that covers the stigma and acts as a mechanical barrier.
- **Dichogamy:** The anthers and stigma of the same flower do not mature at the same time.
 - **Protandry:** The anthers of the flowers mature earlier than the stigma. Examples: Lady finger, Salvia, Sunflower, Sweet pea
 - **Protogyny:** The stigma of flowers mature earlier than the anthers. Examples: Custard apple, Peepal

Agents of Cross Pollination

AGENT	METHOD	EXAMPLES OF PLANTS
Insects	Entomophily	Sweet pea, <i>Dahlia</i>
Wind	Anemophily	Maize
Water	Hydrophily	<i>Vallisneria</i>
Bird	Ornithophily	<i>Bignonia</i> , <i>Canna</i>
Bat	Chiropterophily	<i>Agave</i> , <i>Saguaro</i>
Snail	Malacophily	<i>Volvulopsis nummularium</i>
Elephant	Elephophily	<i>Rafflesia</i>
Bee	Melittophily	Apple, Almond
Butterfly	Psychophily	<i>Asclepias tuberosa</i> , <i>Echinacea purpurea</i>
Moth	Phalaenophily	<i>Liatris spicata</i> , <i>Camassia esculenta</i>
Fly	Myophily/Sapromyophily	<i>Habenaria obtusata</i> , <i>Trichopoda sp.</i>
Beetle	Cantharophily	Pond lily, <i>Magnolia</i>

Differences between Wind-Pollinated and Insect-Pollinated Flowers

WIND-POLLINATED FLOWERS	INSECT-POLLINATED FLOWERS
<ul style="list-style-type: none"> Flowers are usually unisexual, dull coloured and do not have any nectar or scent. 	<ul style="list-style-type: none"> Flowers are brightly coloured, scented and secrete nectar.
<ul style="list-style-type: none"> Pollen grains are small, light and smooth. 	<ul style="list-style-type: none"> Pollen grains are larger, sticky and spiny.
<ul style="list-style-type: none"> Pollen grains are produced in abundance, and so, some are wasted. 	<ul style="list-style-type: none"> Pollen grains are fewer in number as they are transported mechanically by insects.
<ul style="list-style-type: none"> The stigma of flowers is feathery, sticky and hang out of the petals. 	<ul style="list-style-type: none"> The stigma of flowers is small and deep within the corolla.
<ul style="list-style-type: none"> The stamens are long and protrude out of the flowers. 	<ul style="list-style-type: none"> The stamens are within the corolla tube.
<ul style="list-style-type: none"> Examples: Maize, Wheat, Rice, Grass 	<ul style="list-style-type: none"> Examples: Sunflower, China rose, Salvia, Pea

Advantages of Cross Pollination

- The offspring are healthier.
- The seeds are produced in larger number and are more viable.
- The seeds develop and germinate properly and grow into better plants.
- Results in new varieties because cross pollination can be carried out between two different varieties of the same species or even two species.

Disadvantages of Cross Pollination

- It is not always certain as a pollinating agent is always required, and it may or may not be available at the suitable time.
- Pollen grains have to be produced in abundance to ensure chances of pollination. This results in lot of wastage of pollen.
- It is uneconomical for plants as they have to produce flowers that are large, perfumed and with nectar to attract insects.

Differences between Self Pollination and Cross Pollination

SELF POLLINATION	CROSS POLLINATION
<ul style="list-style-type: none"> It is the transfer of pollen grains from the anther to the stigma of the same flower. 	<ul style="list-style-type: none"> It is the transfer of pollen grains from the anther of one flower to the stigma of another flower of a different plant of the same species.
<ul style="list-style-type: none"> It does not require any external agent, such as wind, water and insects, to carry out pollination. 	<ul style="list-style-type: none"> It requires an external agent for pollination to occur.
<ul style="list-style-type: none"> It can take place even when the flower is closed. 	<ul style="list-style-type: none"> It can occur only when the flower is open.
<ul style="list-style-type: none"> In self-pollinated flowers, the anther and stigma mature at the same time. 	<ul style="list-style-type: none"> In cross-pollinated flowers, the anther and stigma mature at different times.
<ul style="list-style-type: none"> It preserves parental characters 	<ul style="list-style-type: none"> It does not preserve parental characters.
<ul style="list-style-type: none"> New varieties are not possible. 	<ul style="list-style-type: none"> New varieties can be produced.
<ul style="list-style-type: none"> As new variations are not possible, the offspring cannot adapt to changing environmental conditions. 	<ul style="list-style-type: none"> As new variations are possible, the offspring are healthier and are able to adapt to changing environmental conditions.