MATHS

$(a+b)^{2}$

$a^{2}+2 a b+b^{2}$

Polynomials

1. A polynomial $p(x)$ in one variable x is an algebraic expression in x of the form
$p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots \ldots . .+a_{2} x^{2}+a_{1} x+a_{0}$, where
i. $a_{0}, a_{1}, a_{2} \ldots \ldots a_{n}$ are constants
ii. x is a variable
iii. $a_{0}, a_{1}, a_{2} \ldots \ldots a_{n}$ are respectively the coefficients of x^{i}
iv. Each of $a_{n} x^{n}, a_{n-1} x^{n-1}, a_{n-2} x^{n-2}, \ldots \ldots . . a_{2} x^{2}, a_{1} x, a_{0}$, with $a_{n} \neq 0$, is called a term of a polynomial.
2. The highest power of the variable in a polynomial is called the degree of the polynomial.
3. A polynomial with one term is called a monomial.
4. A polynomial with two terms is called a binomial.
5. A polynomial with three terms is called a trinomial.
6. A polynomial with degree zero is called a constant polynomial. For example: 1, -3 . The degree of non-zero constant polynomial is zero
7. A polynomial of degree one is called a linear polynomial. It is of the form $a x+b$. For example: $x-2$, $4 y+89,3 x-z$.
8. A polynomial of degree two is called a quadratic polynomial. It is of the form $a x^{2}+b x+c$. where a, b, c are real numbers and $a \neq 0$ For example: $x^{2}-2 x+5$ etc.
9. A polynomial of degree three is called a cubic polynomial and has the general form $a x^{3}+b x^{2}+c x+d$. For example: $x^{3}+2 x^{2}-2 x+5$ etc.
10. A bi-quadratic polynomial $p(x)$ is a polynomial of degree four which can be reduced to quadratic polynomial in the variable $z=x^{2}$ by substitution.
11. The zero polynomial is a polynomial in which the coefficients of all the terms of the variable are zero. Degree of zero polynomial is not defined.
12. The value of a polynomial $f(x)$ at $x=p$ is obtained by substituting $x=p$ in the given polynomial and is denoted by $f(p)$.
13. A real number ' a ' is a zero/ root of a polynomial $p(x)$ if $p(a)=0$.
14. The number of real zeroes of a polynomial is less than or equal to the degree of polynomial.
15. Finding a zero or root of a polynomial $f(x)$ means solving the polynomial equation $f(x)=0$.
16. A non zero constant polynomial has no zero.
17. Every real number is a zero of a zero polynomial.

MATHS POLYNOMIALS

18. Division algorithm

If $p(x)$ and $g(x)$ are the two polynomials such that degree of $p(x) \geq$ degree of $g(x)$ and $g(x) \neq 0$, then we can find polynomials $q(x)$ and $r(x)$ such that:
$p(x)=g(x) q(x)+r(x)$
where, $r(x)=0$ or degree of $r(x)<$ degree of $g(x)$.

19. Remainder theorem

Let $p(x)$ be any polynomial of degree greater than or equal to one and let a be any real number. If $p(x)$ is divided by the linear polynomial $(x-a)$, then remainder is $p(a)$.
i. If the polynomial $p(x)$ is divided by $(x+a)$, the remainder is given by the value of $p(-a)$.
ii. If $p(x)$ is divided by $a x+b=0 ; a \neq 0$, the remainder is given by

$$
p\left(\frac{-b}{a}\right) ; a \neq 0
$$

iii. If $p(x)$ is divided by $a x-b=0, a \neq 0$, the remainder is given by

$$
p\left(\frac{b}{a}\right) ; a \neq 0
$$

20. Factor theorem

Let $p(x)$ is a polynomial of degree $n \geq 1$ and a is any real number such that $p(a)=0$, then $(x-a)$ is a factor of $p(x)$.

21. Converse of factor theorem

Let $p(x)$ is a polynomial of degree $n \geq 1$ and a is any real number. If $(x-a)$ is a factor of $p(x)$, then $p(a)=0$.
i. $\quad(x+a)$ is a factor of a polynomial $p(x)$ iff $p(-a)=0$.
ii. $(a x-b)$ is a factor of a polynomial $p(x)$ iff $p(b / a)=0$.
iii. $\quad(a x+b)$ is a factor of a polynomial $p(x)$ iff $p(-b / a)=0$.
iv. $(x-a)(x-b)$ is a factor of a polynomial $p(x)$ iff $p(a)=0$ and $p(b)=0$.
22. For applying factor theorem the divisor should be either a linear polynomial of the form $(a x+b)$ or it should be reducible to a linear polynomial.
23. If $f(x)$ is a polynomial with integral coefficients and the leading coefficient is 1 , then any integer root of $f(x)$ is a factor of the constant term.
24. A quadratic polynomial $a x^{2}+b x+c$ is factorised by splitting the middle term by writing b as $p s+q r$ such that $(p s)(q r)=a c$.
Then, $a x^{2}+b x+c=(p x+q)(r x+s)$
25. An algebraic identity is an algebraic equation which is true for all values of the variables occurring in it.

26. Some useful quadratic identities:

i. $(x+y)^{2}=x^{2}+2 x y+y^{2}$
ii. $\quad(x-y)^{2}=x^{2}-2 x y+y^{2}$
iii. $(x-y)(x+y)=x^{2}-y^{2}$
iv. $(x+a)(x+b)=x^{2}+(a+b) x+a b$
v. $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}++2 x y+2 y z+2 z x$

Here x, y, z are variables and a, b are constants.

MATHS POLYNOMIALS

27. Some useful cubic identities:

i. $(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y)$
ii. $\quad(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)$
iii. $x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$
iv. $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$
v. $x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)$
vi. If $x+y+z=0$ then $x^{3}+y^{3}+z^{3}=3 x y z$

Here, x, y and z are variables.

