Get More Marks

MATHS

$(a+b)^{2}$

Integrals

Top Concepts

1. Integration is the inverse process of differentiation. The process of finding the function from its primitive is known as integration or antidifferentiation.
2. The problem of finding a function whenever its derivative is given leads to indefinite form of integrals.
3. The problem of finding the area bounded by the graph of a function under certain conditions leads to a definite form of integrals.
4. Indefinite and definite integrals together constitute Integral Calculus.
5. Indefinite integral $\int f(x) d x=F(x)+C$, where $F(x)$ is the antiderivative of $f(x)$.
6. Functions with same derivatives differ by a constant.
7. $\int f(x) d x$ means integral of f with respect to $x, f(x)$ is the integrand, x is the variable of integration and C is the constant of integration.
8. Geometrically indefinite integral is the collection of family of curves, each of which can be obtained by translating one of the curves parallel to itself.
Family of curves representing the integral of $3 x^{2}$

$\int f(x) d x=F(x)+C$ represents a family of curves where different values of C correspond to different members of the family, and these members are obtained by shifting any one of the curves parallel to itself.

MATHS INTEGRALS

9. Properties of antiderivatives

$\int[f(x)+g(x)] d x=\int f(x) d x+\int g(x) d x$
$\int k f(x) d x=k \int f(x) d x$ for any real number k
$\int\left[k_{1} f_{1}(x)+k_{2} f_{2}(x)+\ldots \ldots+k_{n} f_{n}(x)\right] d x=k_{1} \int f_{1}(x) d x+k_{2} \int f_{2}(x) d x+\ldots+k_{n} \int f_{n}(x) d x$
where $k_{1}, k_{2}, \ldots k_{n}$ are real numbers and $f_{1}, f_{2}, \ldots f_{n}$ are real functions.
10. Two indefinite integrals with the same derivative lead to the same family of curves and so they are equivalent.

11. Comparison between differentiation and integration

1. Both are operations on functions.
2. Both satisfy the property of linearity.
3. All functions are not differentiable and all functions are not integrable.
4. The derivative of a function is a unique function, but the integral of a function is not.
5. When a polynomial function P is differentiated, the result is a polynomial whose degree is 1 less than the degree of P. When a polynomial function P is integrated, the result is a polynomial whose degree is 1 more than that of P.
6. The derivative is defined at a point P and the integral of a function is defined over an interval.
7. Geometrical meaning: The derivative of a function represents the slope of the tangent to the corresponding curve at a point. The indefinite integral of a function represents a family of curves placed parallel to each other having parallel tangents at the points of intersection of the family with the lines perpendicular to the axis.
8. The derivative is used for finding some physical quantities such as the velocity of a moving particle when the distance traversed at any time t is known. Similarly, the integral is used in calculating the distance traversed when the velocity at time t is known.
9. Differentiation and integration, both are processes involving limits.
10. By knowing one antiderivative of function f, an infinite number of antiderivatives can be obtained.
11. Integration can be done by using many methods. Prominent among them are
i. Integration by substitution
ii. Integration using partial fractions
iii. Integration by parts
iv. Integration using trigonometric identities
12. A change in the variable of integration often reduces an integral to one of the fundamental integrals.

Some standard substitutions are
$\mathrm{x}^{2}+\mathrm{a}^{2}$; substitute $\mathrm{x}=\mathrm{a} \tan \theta$
$\sqrt{x^{2}-a^{2}} ;$ substitute $x=a \sec \theta$
$\sqrt{a^{2}-x^{2}} ;$ substitute $x=a \sin \theta$ or $a \cos \theta$
13. A function of the form $\frac{P(x)}{Q(x)}$ is known as a rational function. Rational functions can be integrated using partial fractions.
14. Partial fraction decomposition or partial fraction expansion is used to reduce the degree of either the numerator or the denominator of a rational function.

15. Integration using partial fractions

A rational function $\frac{P(x)}{Q(x)}$ can be expressed as the sum of partial fractions if $\frac{P(x)}{Q(x)}$. This takes any of the forms:

- $\frac{p x+q}{(x-a)(x-b)}=\frac{A}{x-a}+\frac{B}{x-b}, a \neq b$
- $\frac{p x+q}{(x-a)^{2}}=\frac{A}{x-a}+\frac{B}{(x-a)^{2}}$
- $\frac{p x^{2}+q x+r}{(x-a)(x-b)(x-c)}=\frac{A}{x-a}+\frac{B}{x-b}+\frac{C}{x-c}$
- $\frac{p x^{2}+q x+r}{(x-a)^{2}(x-b)}=\frac{A}{x-a}+\frac{B}{(x-a)^{2}}+\frac{C}{x-b}$
- $\frac{p x^{2}+q x+r}{(x-a)\left(x^{2}+b x+c\right)}=\frac{A}{x-a}+\frac{B x+C}{x^{2}+b x+c}$
where $x^{2}+b x+c$ cannot be factorised further.

16. To find the integral of the product of two functions, integration by parts is used.

I and II functions are chosen using the ILATE rule:
I- inverse trigonometric
L- logarithmic
A - algebraic
T-trigonometric
E - exponential is used to identify the first function.

17. Integration by parts

Integral of the product of two functions $=($ first function $) \times$ (integral of the second function) - integral of [(differential coefficient of the first function) \times (integral of the second function)]
$\int f_{1}(x) \cdot f_{2}(x) d x=f_{1}(x) \int f_{2}(x) d x-\int\left[\frac{d}{d x} f_{1}(x) \cdot \int f_{2}(x) d x\right] d x$, where f_{1} and f_{2} are functions of x.
18. Definite integral $\int_{a}^{b} f(x) d x$ of the function $f(x)$ from limits a to b represents the area enclosed by the graph of the function $\mathrm{f}(\mathrm{x})$, the x -axis and the vertical markers $\mathrm{x}=$ ' a ' and $\mathrm{x}=\mathrm{b}$ '.

19. Definite integral as the limit of a sum: The process of evaluating a definite integral by using the definition is called integration as the limit of a sum or integration from first principles.
20. Method of evaluating $\int_{a}^{b} f(x) d x$
(i) Calculate antiderivative $\mathrm{F}(\mathrm{x})$
(ii) Calculate $F(b)-F(a)$
21. Area function
$A(x)=\int_{a}^{x} f(x) d x$, if x is a point in $[a, b]$.

MATHS INTEGRALS

22. Fundamental Theorem of Integral Calculus

- First fundamental theorem of integral calculus: If area function, $A(x)=\int_{a}^{x} f(x) d x$ for all $x \geq a$, and f is continuous on $[a, b]$. Then $A^{\prime}(x)=f(x)$ for all $x \in[a, b]$
- Second fundamental theorem of integral calculus: Let f be a continuous function of x in the closed interval $[a, b]$ and let F be antiderivative of $\frac{d}{d x} F(x)=f(x)$ for all x in domain of f, then $\int_{a}^{b} f(x) d x=[F(x)+C=F(b)-F(a)$

Top Formulae

1. Some Standard Integrals

- $\int x^{n} d x=\frac{x^{n+1}}{n+1}+C, n \neq-1$
- $\int d x=x+C$
- $\int \cos x d x=\sin x+C$
- $\int \sin x d x=-\cos x+C$
- $\int \sec ^{2} x d x=\tan x+C$
- $\int \operatorname{cosec}^{2} x d x=-\cot x+C$
- $\int \sec x \tan x d x=\sec x+C$
- $\int \operatorname{cosec} x \cot x d x=-\operatorname{cosec} x+C$
- $\int \frac{d x}{\sqrt{1-x^{2}}}=\sin ^{-1} x+C$
- $\int-\frac{d x}{\sqrt{1-x^{2}}}=\cos ^{-1} x+C$
- $\int \frac{\mathrm{dx}}{1+\mathrm{x}^{2}}=\tan ^{-1} \mathrm{x}+\mathrm{C}$
- $\int \frac{\mathrm{dx}}{1+\mathrm{x}^{2}}=-\cot ^{-1} \mathrm{x}+\mathrm{C}$
- $\int \frac{d x}{x \sqrt{x^{2}-1}}=\sec ^{-1} x+C$
- $\int \frac{d x}{x \sqrt{x^{2}-1}}=-\operatorname{cosec}^{-1} x+C$
- $\int e^{x} d x=e^{x}+C$
- $\int a^{x} d x=\frac{a^{x}}{\log a}+C$

MATHS INTEGRALS

- $\int \frac{1}{x} d x=\log |x|+C$
- $\int \tan x d x=\log |\sec x|+C$
- $\int \cot x d x=\log |\sin x|+C$
- $\int \sec x d x=\log |\sec x+\tan x|+C$
- $\int \operatorname{cosec} x d x=\log |\operatorname{cosec} x-\cot x|+C$
- $\int(a x+b)^{n} d x=\frac{(a x+b)^{n+1}}{a(n+1)}+C, n \neq-1$
- $\int \frac{1}{a x+b} d x=\frac{1}{a} \log |a x+b|+C$
- $\int e^{a x+b} d x=\frac{1}{a} e^{a x+b}+C$
- $\int a^{b x+c} d x=\frac{1}{b} \cdot \frac{a^{b x+c}}{\log a}+C, a>0, a \neq 1$
- $\int \sin (a x+b) d x=-\frac{1}{a} \cos (a x+b)+C$
- $\int \cos (a x+b) d x=\frac{1}{a} \sin (a x+b)+C$
- $\int \tan (a x+b) d x=\frac{1}{a} \log |\sec (a x+b)|+C$
- $\int \cot (a x+b) d x=\frac{1}{a} \log |\sin (a x+b)|+C$
- $\int \sec ^{2}(a x+b) d x=\frac{1}{a} \tan (a x+b)+C$
- $\int \operatorname{cosec}^{2}(a x+b) d x=-\frac{1}{a} \cot (a x+b)+C$
- $\int \sec (a x+b) \tan (a x+b) d x=\frac{1}{a} \sec (a x+b)+C$
- $\int \operatorname{cosec}(a x+b) \cot (a x+b) d x=-\frac{1}{a} \operatorname{cosec}(a x+b)+C$
- $\int \sec (a x+b) d x=\frac{1}{a} \log |\sec (a x+b)+\tan (a x+b)|+C$
- $\int \operatorname{cosec}(a x+b) d x=\frac{1}{a} \log |\operatorname{cosec}(a x+b)-\cot (a x+b)|+C$
- $\int \frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} \log \left|\frac{x-a}{x+a}\right|+C$
- $\int \frac{d x}{a^{2}-x^{2}}=\frac{1}{2 a} \log \left|\frac{a+x}{a-x}\right|+C$
- $\int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+C$
- $\int-\frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \cot ^{-1} \frac{x}{a}+C$
- $\int \frac{d x}{\sqrt{x^{2}-a^{2}}}=\log \left|x+\sqrt{x^{2}-a^{2}}\right|+C$
- $\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1} \frac{x}{a}+C$
- $\int-\frac{d x}{\sqrt{a^{2}-x^{2}}}=\cos ^{-1} \frac{x}{a}+C$
- $\int \frac{d x}{x \sqrt{x^{2}-a^{2}}}=\frac{1}{a} \sec ^{-1} \frac{x}{a}+C$
- $\int-\frac{d x}{x \sqrt{x^{2}-a^{2}}}=\frac{1}{a} \operatorname{cosec}^{-1} \frac{x}{a}+C$
- $\int \frac{d x}{\sqrt{x^{2}+a^{2}}}=\log \left|x+\sqrt{x^{2}+a^{2}}\right|+C$
- $\int e^{a x} \sin b x d x=\frac{e^{a x}}{a^{2}+b^{2}}(a \sin b x-b \cos b x)+C$
- $\int e^{a x} \cos b x d x=\frac{e^{a x}}{a^{2}+b^{2}}(a \cos b x+b \sin b x)+C$
- $\int \sqrt{a^{2}-x^{2}} d x=\frac{1}{2} x \sqrt{a^{2}-x^{2}}+\frac{1}{2} a^{2} \sin ^{-1} \frac{x}{a}+C$
- $\int \sqrt{a^{2}+x^{2}} d x=\frac{1}{2} x \sqrt{a^{2}+x^{2}}+\frac{1}{2} a^{2} \log \left|x+\sqrt{a^{2}+x^{2}}\right|+C$
- $\int \sqrt{x^{2}-a^{2}} d x=\frac{1}{2} x \sqrt{x^{2}-a^{2}}-\frac{1}{2} a^{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|+C$

3. Integration by parts

(i) $\int f_{1}(x) \cdot f_{2}(x) d x=f_{1}(x) \int f_{2}(x) d x-\int\left[\frac{d}{d x} f_{1}(x) \cdot \int f_{2}(x) d x\right] d x$, where f_{1} and f_{2} are functions of x.
(ii) $\int e^{x}\left(f(x)+f^{\prime}(x)\right) d x=e^{x} f(x)+C$

4. Integral as the limit of sums:

$\int_{a}^{b} f(x) d x=(b-a) \lim _{n \rightarrow \infty} \frac{1}{n}\left[f(a)+f(a+h)+\ldots .+f(a+(n-1) h]\right.$ where $h=\frac{b-a}{n}$

MATHS INTEGRALS

5. Different methods of integration

1. Evaluation of integrals of the form $\frac{p(x)}{(a x+b)^{n}}, n \in N$, where $p(x)$ is a polynomial Steps:
i. Check whether degree of $p(x) \geq$ or $\leq n$
ii. If degree of $p(x)<n$, then express $p(x)$ in the form

$$
A_{0}+A_{1}(a x+b)+A_{2}(a x+b)^{2}+\ldots+A_{n-1}(a x+b)^{n-1}
$$

iii. Write $\frac{p(x)}{(a x+b)^{n}}$ as $\frac{A_{0}}{(a x+b)^{n}}+\frac{A_{1}}{(a x+b)^{n-1}}+\frac{A_{2}}{(a x+b)^{n-2}}+\ldots+\frac{A_{n-1}}{(a x+b)}$
iv. Evaluate

$$
\begin{aligned}
& \int \frac{p(x)}{(a x+b)^{n}} d x=A_{0} \int \frac{1}{(a x+b)^{n}} d x+A_{1} \int \frac{1}{(a x+b)^{n-1}} d x \\
& +A_{2} \int \frac{1}{(a x+b)^{n-2}} d x+\ldots+A_{n-1} \int \frac{1}{(a x+b)} d x
\end{aligned}
$$

v. If degree of $p(x) \geq n$, then divide $p(x)$ by $(a x+b)^{n}$ and express
$\frac{p(x)}{(a x+b)^{n}}$ as $q(x)+\frac{r(x)}{(a x+b)^{n}}$, where degree of
$r(x)$ is less than n
vi. Use steps (ii) and (iii) to evaluate $\int \frac{r(x)}{(a x+b)^{n}} d x$
2. Evaluation of integrals of the form $\int(a x+b) \sqrt{c x+d} d x$

Steps:

i. Represent $(a x+b)$ in terms of $(c x+d)$ as follows:

$$
(\mathrm{ax}+\mathrm{b})=\mathrm{A}(\mathrm{cx}+\mathrm{d})+\mathrm{B}
$$

ii. Find A and B by equating coefficients of like powers of x on both sides
iii. Replace $(a x+b)$ by $A(c x+d)+B$ in the given integral to obtain

$$
\begin{aligned}
& \int(a x+b) \sqrt{c x+d d x}=\int|A(c x+d)+B| \sqrt{c x+d d x} \\
& =A \int(c x+d)^{\frac{3}{2}} d x+B \int \sqrt{c x+d d x} \\
& =\frac{2 A}{5 c}(c x+d)^{\frac{5}{2}}+\frac{2 B}{5 c}(c x+d)^{\frac{3}{2}}+C
\end{aligned}
$$

MATHS INTEGRALS

3. Evaluation of integrals of the form $\int \frac{(a x+b)}{\sqrt{c x+d}} d x$

Steps:
i. Represent $(a x+b)$ in terms of $(c x+d)$ as follows:

$$
(\mathrm{ax}+\mathrm{b})=\mathrm{A}(\mathrm{cx}+\mathrm{d})+\mathrm{B}
$$

ii. Find A and B by equating coefficients of like powers of x on both sides
iii. Replace $(a x+b)$ by $A(c x+d)+B$ in the given integral to obtain

$$
\begin{aligned}
& \int \frac{(a x+b)}{\sqrt{c x+d}} d x=\int \frac{|A(c x+d)+B|}{\sqrt{c x+d}} d x \\
& =A \int \sqrt{c x+d d x}+B \int \frac{1}{\sqrt{c x+d}} d x \\
& =\frac{2 A}{3 c}(c x+d)^{\frac{3}{2}}+\frac{2 B}{c}(c x+d)^{\frac{1}{2}}+C
\end{aligned}
$$

4. Evaluation of integrals of the form $\int \sin ^{m} x d x, \int \cos ^{m} x d x$, where $m \leq 4$

Let us express $\sin ^{m} x$ and $\cos ^{m} x$ in terms of sines and cosines of multiples of x by using the following identities:
i. $\sin ^{2} x=\frac{1-\cos 2 x}{2}$
ii. $\cos ^{2} x=\frac{1+\cos 2 x}{2}$
iii. $\sin 3 x=3 \sin x-4 \sin ^{3} x$
iv. $\cos 3 x=4 \cos ^{3} x-3 \cos x$
5. Evaluation of integrals of the form
$\int \sin m x \cdot \cos n x d x, \int \sin m x \cdot \sin n x d x, \int \cos m x \cdot \cos n x d x$
Let us use the following identities:
i. $2 \sin A \cos B=\sin (A+B)+\sin (A-B)$
ii. $2 \cos A \cos B=\cos (A+B)+\cos (A-B)$
iii. $2 \cos A \sin B=\sin (A+B)-\sin (A-B)$
iv. $2 \sin A \sin B=\cos (A-B)-\cos (A+B)$
6. Evaluation of integrals of the form $\int \frac{f^{\prime}(x)}{f(x)} d x$

$$
\int \frac{f^{\prime}(x)}{f(x)} d x=\log |f(x)|+C
$$

MATHS INTEGRALS

7. Evaluation of integrals of the form
$\int(a x+b)^{n} p(x) d x, \int \frac{p(x)}{(a x+b)^{n}} d x$, where $p(x)$ is a polynomial and n is a positive rational number
Steps:
i. Substitute $\mathrm{ax}+\mathrm{b}=\mathrm{v}$ or $\mathrm{x}=\frac{\mathrm{v}-\mathrm{b}}{\mathrm{a}}$ and $\mathrm{dx}=\frac{1}{\mathrm{a}} \mathrm{dv}$
ii. Now integrate with respect to v by using $\int v^{n} d v=\frac{v^{n+1}}{n+1}+C$
iii. Replace v by $a x+b$
8. Evaluation of integrals of the form

$$
\int \tan ^{m} x \cdot \sec ^{2 n} x d x, \int \cot ^{m} x \cdot \operatorname{cosec}^{2 n} x d x, m, n \in N
$$

Steps:
i. Rewrite the given integral as $I=\int \tan ^{m} x \cdot\left(\sec ^{2} x\right)^{(n-1)} \sec ^{2} x d x$
ii. Substitute $\tan x=v$ and $\sec ^{2} x d x=d v$

Therefore,
$I=\int \tan ^{m} x \cdot\left(\sec ^{2} x\right)^{(n-1)} \sec ^{2} x d x$
$=\int \tan ^{m} x \cdot\left(1+\tan ^{2} x\right)^{(n-1)} \sec ^{2} x d x$
$=\int v^{m} \cdot\left(1+v^{2}\right)^{(n-1)} d v$
iii. Use the binomial theorem to expand $\left(1+v^{2}\right)^{(n-1)}$ in step (ii) and integrate
iv. Replace v by $\tan x$ in step (iii)
9. Evaluation of integrals of the form $\int \tan ^{2 m+1} x \cdot \sec ^{2 n+1} x d x, \int \cot ^{m} x \cdot \operatorname{cosec}^{2 n} x d x$, where
m and n are nonnegative integers
Steps:
i. Rewrite the given integral as $I=\int\left(\tan ^{2} x\right)^{m} \cdot(\sec x)^{2 n} \sec x \cdot \tan x d x$
ii. Put $\sec x=v$ and $\sec x \tan x d x=d v$

Therefore,
$I=\int\left(\sec ^{2} x-1\right)^{m} \cdot(\sec x)^{2 n} \sec x \cdot \tan x d x$
$=\int\left(v^{2}-1\right)^{m} v^{n} d v$
iii. Use the binomial theorem to expand $\left(v^{2}-1\right)^{m}$ in step (ii) and integrate
iv. Replace v by secx in step (iii)

MATHS INTEGRALS

10. Evaluation of integrals of the form $\int \sin ^{m} x \cdot \cos ^{n} x d x$, where $m, n \in N$

Steps:
i. Check the exponents of $\sin x$ and $\cos x$
ii. If the exponent of $\sin x$ is an odd positive integer, then put $\cos x=v$

If the exponent of $\cos x$ is an odd positive integer, then put $\sin x=v$
If the exponents of both $\sin x$ and $\cos x$ are odd positive integers, then put either $\sin x=v$ or $\cos \mathrm{X}=\mathrm{v}$
If the exponents of both $\sin x$ and $\cos x$ are even positive integers, then rewrite $\sin ^{m} x \cos ^{n} x$ in terms of sines and cosines of multiples of x by using trigonometric results
iii. Evaluate the integral in step (ii)
11. Evaluation of integrals of the form
$\int \sin ^{m} x \cdot \cos ^{n} x d x$, where $m, n \in Q$, such that
$\mathrm{m}+\mathrm{n}$ is a negative even integer.
Steps:
i. Represent the integrand in terms of $\tan x$ and $\sec ^{2} x$ by dividing the numerator and denominator by $\cos ^{k} \mathrm{x}$, where $\mathrm{k}=-(\mathrm{m}+\mathrm{n})$
ii. Put $\tan x=v$
12. Evaluation of integrals of the form $\int \frac{d x}{a x^{2}+b x+c}$

Steps:
i. Multiply and divide the integrand by x^{2} and make the coefficient of x^{2} unity
ii. Observe the coefficient of x
iii. Add and subtract $\left(\frac{1}{2} \text { coefficient } x\right)^{2}$ to the expression in the denominator
iv. Express the expression in the denominator in the form $\left\{\left(x+\frac{b}{2 a}\right)^{2}+\frac{4 a c-b^{2}}{4 a^{2}}\right\}$
v. Use the appropriate formula to integrate
13. Evaluation of integrals of the form $\int \frac{d x}{\sqrt{a x^{2}+b x+c}}$

Steps:
i. Multiply and divide the integrand by x^{2} and make the coefficient of x^{2} unity
ii. Observe the coefficient of x
iii. Add and subtract $\left(\frac{1}{2} \text { coefficient } x\right)^{2}$ inside the square root
iv. Express the expression inside the square root in the form $\left\{\left(x+\frac{b}{2 a}\right)^{2}+\frac{4 a c-b^{2}}{4 a^{2}}\right\}$
v. Use the appropriate formula to integrate
14. Evaluation of integrals of the form $\int \frac{p x+q}{a x^{2}+b x+c} d x$

Steps:
i. Rewrite the numerator as follows:

$$
\begin{aligned}
& \mathrm{px}+\mathrm{q}=\mathrm{A}\left\{\frac{\mathrm{~d}}{\mathrm{dx}}\left(\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}\right)\right\}+\mathrm{B} \\
& \Rightarrow \mathrm{px}+\mathrm{q}=\mathrm{A}\{2 \mathrm{ax}+\mathrm{b}\}+\mathrm{B}
\end{aligned}
$$

ii. Find the values of A and B by equating the coefficients of like powers of x on both sides
iii. Substitute $p x+q$ by $A\{2 a x+b\}+B$ in the given integral

Therefore, $\int \frac{p x+q}{a x^{2}+b x+c} d x=A \int \frac{2 a x+b}{a x^{2}+b x+c} d x+B \int \frac{1}{a x^{2}+b x+c} d x$
iv. Integrate the right-hand side and substitute the values of A and B
15. Evaluation of integrals of the form $\int \frac{p x+q}{a x^{2}+b x+c} d x$, where $p(x)$ is a polynomial degree greater than or equal to 2
Steps:
i. Divide the numerator by the denominator, and rewrite the integrand as

$$
q(x)+\frac{r(x)}{a x^{2}+b x+c} \text {, where } r(x) \text { is a linear function of } x
$$

ii. Thus,

$$
\int \frac{p x+q}{a x^{2}+b x+c} d x=\int q(x) d x+\int \frac{r(x)}{a x^{2}+b x+c} d x
$$

iii. Integrate the second integral on the right-hand side and apply the appropriate method
16. Evaluation of integrals of the form $\int \frac{p x+q}{\sqrt{a x^{2}+b x+c}} d x$

Steps:
i. Rewrite the numerator as follows:

$$
\begin{aligned}
& \mathrm{px}+\mathrm{q}=\mathrm{A}\left\{\frac{\mathrm{~d}}{\mathrm{dx}}\left(\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}\right)\right\}+\mathrm{B} \\
& \Rightarrow \mathrm{px}+\mathrm{q}=\mathrm{A}\{2 \mathrm{ax}+\mathrm{b}\}+\mathrm{B}
\end{aligned}
$$

ii. Find the values of A and B by equating the coefficients of like powers of x on both sides
iii. Substitute $p x+q$ by $A\{2 a x+b\}+B$ in the given integral

Therefore, $\int \frac{p x+q}{\sqrt{a x^{2}+b x+c}} d x=A \int \frac{2 a x+b}{\sqrt{a x^{2}+b x+c}} d x+B \int \frac{1}{\sqrt{a x^{2}+b x+c}} d x$
iv. Integrate the right-hand side and substitute the values of A and B

MATHS INTEGRALS

17. Evaluation of integrals of the form

$$
\int \frac{d x}{a \sin ^{2} x+b \cos ^{2} x}, \int \frac{d x}{a+b \sin ^{2} x}, \int \frac{d x}{a+b \cos ^{2} x},
$$

$$
\int \frac{d x}{(a \sin x+b \cos x)^{2}}, \int \frac{d x}{a+b \sin ^{2} x+\cos ^{2} x}
$$

Steps:
i. Divide the numerator and denominator by $\cos ^{2} x$
ii. In the denominator, replace $\sec ^{2} x$ by $1+\tan ^{2} x$
iii. Substitute $\tan x=v ; \sec ^{2} x d x=d v$
iv. Apply the appropriate method to integrate the integral $\int \frac{d v}{\mathrm{av}^{2}+\mathrm{bv}+\mathrm{c}}$
18. Evaluation of integrals of the form
$\int \frac{d x}{a \sin x+b \cos x}, \int \frac{d x}{a+b \sin x}, \int \frac{d x}{a+b \cos x}$,
$\int \frac{d x}{a+b \sin x+c \cos x}$
Steps:
i. Substitute $\sin x=\frac{2 \tan \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}, \cos x=\frac{1-\tan ^{2} \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}$
ii. In the numerator, replace $1+\tan ^{2} \frac{x}{2}$ by $\sec ^{2} \frac{x}{2}$
iii. Substitute $\tan \frac{x}{2}=v ; \frac{1}{2} \sec ^{2} \frac{x}{2} d x=d v$
iv. Apply the appropriate method to integrate the integral $\int \frac{d v}{a v^{2}+b v+c}$
19. Alternate method: Evaluation of integrals of the form
$\int \frac{d x}{a \sin x+b \cos x}$
Steps:

Substitute $a=r \cos \theta, b=r \sin \theta ;$
where $r=\sqrt{a^{2}+b^{2}}, \quad \theta=\tan ^{-1}\left(\frac{b}{a}\right)$
$\Rightarrow a \sin x+b \cos x=r \cos \theta \sin x+r \sin \theta \cos x=r \sin (x+\theta)$
$\therefore \int \frac{d x}{a \sin x+b \cos x}=\frac{1}{\sqrt{a^{2}+b^{2}}} \log \left|\tan \left(\frac{\mathrm{x}}{2}+\frac{1}{2} \tan ^{-1} \frac{\mathrm{~b}}{\mathrm{a}}\right)\right|+\mathrm{C}$

MATHS INTEGRALS

20. Evaluation of integrals of the form
$\int \frac{a \sin x+b \cos x}{c \sin x+d \cos x} d x$
Steps:
i. Substitute

Numeraror $=A$ (Differentiation of denominator) $+B$ (Denomin ator)
That is $a \sin x+b \cos x=A(\cos x-d \sin x)+B(c \sin x+d \cos x)$
ii. Compare the coefficients of $\sin x$ and $\cos x$ on both the sides and get the values of A and B
iii. Replace the integrand by $A(c \cos x-d \sin x)+B(c \sin x+d \cos x)$
iv. Hence, the value of the integral $\int \frac{a \sin x+b \cos x}{c \sin x+d \cos x} d x$ is
$=A \log |c \sin x+d \cos x|+\mu x+C$
21. Evaluation of integrals of the form
$\int \frac{a \sin x+b \cos x+c}{m \sin x+n \cos x+p} d x$
Steps:
i. Substitute

Numeraror $=\mathrm{A}$ (Differentiation of denominator) +B (Deno minator) +K
That is $a \sin x+b \cos x+c=A(m \cos x-n \sin x)+B(m \sin x+n \cos x+p)+K$
ii. Compare the coefficients of $\sin x$ and $\cos x$ and constant terms on both the sides and get the values of A, B and K
iii. Replace the integrand by $A(m \cos x-n \sin x)+B(m \sin x+n \cos x+p)+K$
iv. Hence, the value of the integral $\int \frac{a \sin x+b \cos x+c}{m \sin x+n \cos x+p} d x$ is

$$
=A \log |m \sin x+n \cos x+p|+B x+p \int \frac{1}{m \sin x+n \cos x+p} d x
$$

v. Evaluate the integral on the right-hand side by any appropriate method
22. Evaluation of integrals of the form

$$
\int e^{x}\left[f(x)+f^{\prime}(x)\right] d x
$$

Steps:
i. Write the given integral as
$\int e^{x} \mid f(x)+f^{\prime}(x) d x=\int e^{x} f(x) d x+\int e^{x} f^{\prime}(x) d x$
ii. Find the integration for the first term by parts
iii. (Cancel out the second integral with the second term obtained by integration by parts
iv. Thus, the above result holds true for $e^{k x}$
$\int e^{k x}\left[f(x)+f^{\prime}(x)\right] d x=e^{k x}+C$
23. Evaluation of the integrals of the form $\int \sqrt{a x^{2}+b x+c} d x$ Steps:
i. Take ' a ' common inside the square root so as to get $x^{2}+\frac{b}{a} x+\frac{c}{a}$
ii. Add and subtract the appropriate term to $x^{2}+\frac{b}{a} x+\frac{c}{a}$ to get the term $\left(x+\frac{b}{2 a}\right)^{2}+\frac{4 a c-b^{2}}{4 a^{2}}$
iii. Now evaluate the integral using the appropriate formulae
24. Evaluation of the integrals of the form $\int(m x+n) \sqrt{a x^{2}+b x+c} d x$

Steps:
i. Rewrite $m \mathrm{x}+\mathrm{n}$ as $\mathrm{mx}+\mathrm{n}=\mathrm{A} \frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{ax}{ }^{2}+\mathrm{bx}+\mathrm{c}\right)+\mathrm{B}$

That is, $m \mathrm{x}+\mathrm{n}=\mathrm{A}(2 \mathrm{ax}+\mathrm{b})+\mathrm{B}$
ii. Equate the coefficients of x and constant terms on both sides to get the values of A and B
iii. Substitute $m x+n$ by $A(2 a x+b)+B$
iv. Now evaluate the integral using the appropriate formulae
25. Evaluation of the integrals of the form

$$
\int \frac{x^{2}+1}{x^{4}+k x^{2}+1} d x, \int \frac{x^{2}-1}{x^{4}+k x^{2}+1} d x, \int \frac{1}{x^{4}+k x^{2}+1} d x \text { where } k \in R
$$

Steps:
i. Divide the numerator and the denominator by x^{2}
ii. Write the denominator of the integrand in the form of $\left(x+\frac{1}{x}\right)^{2} \pm m^{2}$
iii. Write $d\left(x+\frac{1}{x}\right)$ or $d\left(x-\frac{1}{x}\right)$ or both in the numerator
iv. Put $x+\frac{1}{x}=v$ or $x-\frac{1}{x}=v$
v. Evaluate the integral using the appropriate formula
26. Evaluation of integration of irrational algebraic functions,
$\int \frac{f(x)}{(g x+h) \sqrt{m x+n}} d x$ where $g, h, m, n \in R$
Step: Put $m \mathrm{x}+\mathrm{n}=\mathrm{v}^{2}$ to evaluate the integral

MATHS INTEGRALS

27. Evaluation of integration of irrational algebraic functions,

$$
\int \frac{f(x)}{\left(r x^{2}+g x+h\right) \sqrt{m x+n}} d x \text { where } r, g, h, m, n \in R
$$

Step: Put $m x+n=v^{2}$ to evaluate the integral
28. Evaluation of integration of irrational algebraic functions, $\int \frac{1}{(g x+h) \sqrt{m x^{2}+n x+p}} d x$ where $g, h, m, n, p \in R$

Step: Put $\mathrm{gx}+\mathrm{h}=\frac{1}{\mathrm{v}}$ to evaluate the integral
29. Evaluation of integration of irrational algebraic functions,

$$
\int \frac{1}{\left(g x^{2}+h\right) \sqrt{\mathrm{mx}^{2}+\mathrm{n}}} d x \text { where } g, h, m, n \in R
$$

Step:
i. Put $x=\frac{1}{v}$

Therefore, $I=\int \frac{-v d v}{\left(g+h v^{2}\right) \sqrt{m+n v^{2}}}$
Now substitute $\mathrm{m}+\mathrm{nv}^{2}=\mathrm{w}^{2}$

6. Properties of definite integrals

- $\int_{a}^{b} f(x) d x=\int_{a}^{b} f(t) d t$
$\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$
In particular, $\int_{a}^{a} f(x) d x=0$
- $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$
- $\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
- $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$

MATHS INTEGRALS

- $\int_{0}^{2 a} f(x) d x=\int_{0}^{a} f(x) d x+\int_{0}^{a} f(2 a-x) d x$
- $\begin{aligned} \int_{0}^{2 a} f(x) d x & =2 \int_{0}^{a} f(x) d x, \text { if } f(2 a-x)=f(x) \\ & =0 \quad, \text { if } f(2 a-x)=-f(x)\end{aligned}$
$\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x$, if $f(-x)=f(x)$
$=0 \quad$, if $f(-x)=-f(x)$

