Basic Concept in Chemistry

STOICHIOMETRY

Relativeatomic mass $($ R.A.M $)=\frac{\text { Mass of one atom of an element }}{\frac{1}{12} \times \text { mass of one carbon atom }}=$ Total Number of nucleons
Y-map

Density:
Specific gravity $=\frac{\text { density of the substance }}{\text { density of water }}$

For gases:

Absolute density mass / volume $=\frac{\text { Molarmass of thegas }}{\text { Molar volume of thegas }} \Rightarrow \rho=\frac{\mathrm{PM}}{\mathrm{RT}}$
Vapour density V.D $=\frac{d_{\text {gas }}}{d_{H_{2}}}=\frac{\mathrm{PM}_{\mathrm{gas} / \mathrm{RT}}}{\mathrm{PM}_{\mathrm{H}_{2} / \mathrm{RT}}}=\frac{\mathrm{M}_{\mathrm{gas}}}{\mathrm{M}_{\mathrm{H}_{2}}}=\frac{\mathrm{M}_{\mathrm{gas}}}{2}$
$M_{g a s}=2$ V.D.
Mole-mole analysis:

Concentration terms:

Molarity (M):
\therefore Molarity $(\mathrm{M})=\frac{\mathrm{w} \times 1000}{(\text { Mol.wt of solute }) \times \mathrm{V}_{\mathrm{inml}}}$

Molality (m):

Molality $=\frac{\text { number of moles of solute }}{\text { mass of solvent in gram }} \times 1000=1000 w_{1} / M_{1} w_{2}$

Mole fraction (x):

\therefore Mole fraction of solution $\left(\mathrm{X}_{1}\right)=\frac{\mathrm{n}}{\mathrm{n}+\mathrm{N}}$
\therefore Mole fraction of solvent $\left(X_{2}\right)=\frac{N}{n+N}$
$\mathrm{X}_{1}+\mathrm{X}_{2}=1$

\% Calculation:

(i) $\% \mathrm{w} / \mathrm{w}=\frac{\text { mass of solute in } \mathrm{gm}}{\text { mass of solution in } \mathrm{gm}} \times 100$
(ii) $\% \mathrm{w} / \mathrm{v}=\frac{\text { mass of solute in } \mathrm{gm}}{\text { mass of solution in } \mathrm{ml}} \times 100$
(iii) $\% \mathrm{v} / \mathrm{v}=\frac{\text { Volume of solution in } \mathrm{ml}}{\text { Volume of solution }} \times 100$

Average/Mean atomic mass:

$A_{x}=\frac{a_{1} x_{1}+a_{2} x_{2}+\ldots .+a_{n} x_{n}}{100}$
Mean molar mass or molecular mass:

$$
M_{a v g}=\frac{n_{1} M_{1}+n_{2} M_{2}+\ldots+n_{n} x_{n}}{n_{1}+n_{2}+\ldots n_{n}} \quad \text { Or } \quad M_{a v g}=\frac{\sum_{j=1}^{j=n} n_{j} M_{j}}{\sum_{j=1}^{j=n} n_{j}}
$$

Calculation of individual oxidation number:

Formula: Oxidation Number=Number of electrons in the valence shell-number of electrons left after bonding

Concept of Equivalent weight/Mass:

For elements, equivalent weight $(E)=\frac{\text { Atomic Weight }}{\text { Valency }- \text { factor }}$
For acid/base, $\quad \mathrm{E}=\frac{\mathrm{M}}{\text { Basicity / Acidity }}$
Where M=Molar mass
For Oxidation \backslash Reduction, $E=\frac{M}{\text { no.of moles of e gained /lost }}$
Equivalent weight $(\mathrm{E})=\frac{\text { Atomicormolecular weight }}{\text { v.f. }}$
(v. f. = valency factor)

Concept of number of equivalents:

No.of equivalents of solute $=\frac{W t}{E q \cdot W t}=\frac{W}{E}=\frac{W}{M / n}$
No. of equivalents of solute $=$ No. of moles of solute \times v.f
Normality (N):
$\left\langle\right.$ Normality $\left.(\mathrm{N})=\frac{\text { Number of equival ents of solute }}{\text { Volume of solution(inlitres) }}\right\rangle$
Normality=Molarity \times v.f

Calculation of valency Factor:

n-factor of acid $=$ basicity $=$ no. of H^{+}ion(s) furnished per molecule of the acid.
n-factor of base $=$ acidity $=$ no. of OH^{-}. ion(s) furnished by the base per molecule.

At equivalence point:

$N_{1} V_{1}=N_{2} V_{2}$
$\mathrm{n}_{1} \mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{n}_{2} \mathrm{M}_{2} \mathrm{~V}_{2}$

Volume strength of $\mathrm{H}_{2} \mathrm{O}_{2}$:

$20 \mathrm{VH}_{2} \mathrm{O}_{2}$ means one litre of this sample of $\mathrm{H}_{2} \mathrm{O}_{2}$ on decomposition gives $\mathbf{2 0} \mathbf{l t}$ of \mathbf{O}_{2} gas at S.T.P. Normality of $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~N}) \frac{\text { Volume, strength of } \mathrm{H}_{2} \mathrm{O}_{2}}{5.6}$
Molarity of $\mathrm{H}_{2} \mathrm{O}_{2}(M)=\frac{\text { Volume strength of } \mathrm{H}_{2} \mathrm{O}_{2}}{11.2}$

Measurement of Hardness:

Hardness in ppm $=\frac{\text { mass of } \mathrm{CaCO}_{3}}{\text { Total mass of water }} \times 10^{6}$
Calculation of available chlorine from a sample of bleaching powder:
$\%$ of $\mathrm{Cl}_{2}=\frac{3.55 \times \mathrm{x} \times \mathrm{V}(\mathrm{mL})}{\mathrm{W}(\mathrm{g})}$ Where $\mathrm{x}=$ molarity of hypo solution and $\mathrm{v}=\mathrm{mL}$. of hypo solution used in titration.

GASEOUS STATE

Temperature Scale:

$$
\frac{C-0}{100-0}=\frac{\mathrm{K}-273}{373-273}=\frac{\mathrm{F}-32}{212-32}
$$

Boyle's law and measurement of pressure:

At constant temperature, $\mathrm{V} \propto \frac{1}{\mathrm{P}}$

$$
P_{1} V_{1}=P_{2} V_{2}
$$

Charles law:

At constant pressure, $\mathrm{V} \propto \mathrm{T}$

$$
\text { Or } \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}
$$

Gay-Lussac's law:
At constant volume, $\mathrm{P} \alpha \mathrm{T}$
$\frac{\mathrm{P}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}} \rightarrow$ Temp on absolute scale

Ideal gas Equation:

PV=nRT
$P V=\frac{w R T}{m} \quad O R \quad P=\frac{d R T}{m} \quad O R \quad P m=d R T$

Dalton's law of partial pressure:

$P_{1}=\frac{n_{1} R T}{V}, \quad P_{2}=\frac{n_{2} R T}{V}, \quad P_{3}=\frac{n_{3} R T}{V}$ and so on.
Total pressure $=\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3}+\ldots$.
Partial pressure $=$ mole fraction \times Total Pressure.
Amagat's law of partial volume:
$V=V_{1}+V_{2}+V_{3}+\ldots$
Average molecular mass of gaseous mixture:
$M_{\text {mix }=} \frac{\text { Total mass of mixture }}{\text { Total no.of moles in mixture }}=\frac{n_{1} M_{1}+n_{2} M_{2}+n_{3} M_{3}}{n_{1}+n_{2}+n_{3}}$

Graham's Law:

Rate of diffusion $\mathrm{r} \propto \frac{1}{\sqrt{\mathrm{~d}}} ; \mathrm{d}=$ density of gas
$\frac{r_{1}}{r_{2}}=\frac{\sqrt{d_{2}}}{\sqrt{d_{1}}}=\frac{\sqrt{M_{2}}}{\sqrt{M_{1}}}=\sqrt{\frac{V \cdot D_{2}}{V \cdot D_{1}}}$

Kinetic Theory of Gases

$\mathrm{PV}=\frac{1}{3} \mathrm{mN} \overline{\mathrm{U}^{2}}$ Kinetic equation of gases
Average K.E. for one mole $=N_{A}\left(\frac{1}{2} m \overline{U^{2}}\right)=\frac{3}{2} \mathrm{KN}_{\mathrm{A}} \mathrm{T}=\frac{3}{2} \mathrm{RT}$

- Root mean square speed
$U_{\mathrm{rms}}=\sqrt{\frac{3 R T}{\mathrm{M}}}$ molar mass must be in $\mathrm{kg} /$ mole.
- Average speed

$$
\begin{aligned}
& \mathrm{U}_{\mathrm{avg}}=\mathrm{U}_{1}+\mathrm{U}_{2}+\mathrm{U}_{3}+\ldots . . \mathrm{U}_{\mathrm{N}} \\
& \mathrm{U}_{\mathrm{avg}}=\sqrt{\frac{8 \mathrm{RT}}{\pi \mathrm{M}}}=\sqrt{\frac{8 \mathrm{kT}}{\pi \mathrm{~m}}} \mathrm{k} \text { is Boltzmann constant }
\end{aligned}
$$

- Most Probable speed

$$
\mathrm{U}_{\mathrm{MPS}}=\sqrt{\frac{2 \mathrm{RT}}{\mathrm{M}}}=\sqrt{\frac{2 \mathrm{kT}}{\mathrm{~m}}}
$$

van der Waal's equation

$$
\left(\mathrm{P}+\frac{\mathrm{an}^{2}}{\mathrm{v}^{2}}\right)(\mathrm{v}-\mathrm{nb})=\mathrm{nRT}
$$

a and b are van der Waal's constants

Critical Constants:

Critical volume, $\mathrm{V}_{\mathrm{c}}=3 \mathrm{~b}$ at P_{c} and V_{c}
Critical pressure, $\mathrm{P}_{\mathrm{c}}=\frac{\mathrm{a}}{27 \mathrm{~b}^{2}}$
Critical temperature, $\mathrm{T}_{\mathrm{c}}=\frac{8 \mathrm{a}}{27 \mathrm{Rb}}$

Vander wall equation in virial form:

$Z=\left(1+\frac{b}{V_{m}}+\frac{b^{2}}{V_{m}^{2}}+\frac{b^{3}}{V_{m}^{3}}+\ldots ..\right)-\frac{a}{V_{m} R T}=1+\frac{1}{V_{m}}\left(b-\frac{a}{R T}\right)+\frac{b^{2}}{V_{m}^{2}}+\frac{b^{3}}{V_{m}^{3}}+\ldots \ldots$.

Reduced Equation of state:

$\left(P_{r}+\frac{3}{V_{r}^{2}}\right)\left(3 V_{r}-1\right)=8 T_{r}$

Atomic Structure

Estimation of closest distance of approach (derivation) of α-particles:

$$
\mathrm{R}=\frac{4 \mathrm{KZe}^{2}}{\mathrm{~m}_{\alpha} \mathrm{V}_{\alpha}^{2}} \quad\left(\mathrm{k}=9 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2}\right)
$$

The radius of a nucleus:
$\mathrm{R}=\mathrm{R}_{0}(\mathrm{~A})^{1 / 3} \mathrm{~cm} \quad\left(\mathrm{R} 0=1.097 \times 10^{5} \mathrm{~cm}^{-1}\right)$
Planck's Quantum Theory:
Energy of one proton $=h v=\frac{h c}{\lambda} \quad\left(h=6.62 \times 10^{-34}\right.$ Joule-second $)$

Photoelectric Effect:

$\mathrm{h} v=\mathrm{h} v_{0}+\frac{1}{2} \mathrm{~m}_{\mathrm{e}} \mathrm{v}^{2}$
Bohr's Model for Hydrogen like atoms:

1. $\mathrm{mvr}=\mathrm{n} \frac{\mathrm{h}}{2 \pi}$ (Quantization of angular momentum)
2. $\quad E_{n}=-\frac{E_{1}}{n^{2}} z^{2}=2.178 \times 10^{-18} \frac{z^{2}}{n^{2}} J /$ atom $=13.6 \frac{\mathrm{z}^{2}}{n^{2}} \mathrm{eV}$
3. $\mathrm{r}_{\mathrm{n}}=\frac{\mathrm{n}^{2}}{\mathrm{Z}} \times \frac{\mathrm{h}^{2}}{4 \pi^{2} \mathrm{e}^{2} \mathrm{~m}}=\frac{0.529 \times \mathrm{n}^{2}}{\mathrm{Z}} \AA$
4. $\mathrm{v}=\frac{2 \pi \mathrm{ze}^{2}}{\mathrm{nh}}=\frac{2.18 \times 10^{6} \times \mathrm{z}}{\mathrm{n}} \mathrm{m} / \mathrm{s}$

De-Broglie Wavelength:
$\lambda=\frac{\mathrm{h}}{\mathrm{mc}}=\frac{\mathrm{h}}{\mathrm{p}}$ (for photon)

Wavelength of emitted photon:

$\frac{1}{\lambda}=\bar{v}=\mathrm{RZ}^{2}\left(\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right)$

$$
\left(\mathrm{R}=1.0973 \times 10^{7} \mathrm{~m}^{-1}\right)
$$

No.of photons emitted by a sample of \mathbf{H} atom:

$$
\frac{\Delta \mathrm{n}(\Delta \mathrm{n}+1)}{2}
$$

Heisenberg's uncertainty principle:
$\Delta x . \Delta \mathrm{p}>\frac{\mathrm{h}}{4 \pi} \quad$ Or $\quad \mathrm{m} \Delta \mathrm{x} \cdot \Delta \mathrm{v} \geq \frac{\mathrm{h}}{4 \pi} \quad$ Or $\quad \Delta \mathrm{x} \cdot \Delta \mathrm{v} \geq \frac{\mathrm{h}}{4 \pi \mathrm{~m}}$

Quantum Numbers:

* Principal quantum number(n$)=1,2,3,4 \ldots$...to ∞
* Orbital angular momentum number of electron in any orbit $=\frac{\mathrm{nh}}{2 \pi}$
* Azimuthal Quantum number $(\ell)=0,1, \ldots .$. to $(n-1)$.
* Number of orbitals in a subshell $=2 \ell+1$
* Maximum number of electrons in particular subshell $=2 \times(2 \ell+1)$
* Orbital angular momentum $\mathrm{L}=\frac{\mathrm{h}}{2 \pi} \sqrt{\ell(\ell+1)}=\hbar \sqrt{\ell(\ell+1)}\left[\hbar=\frac{\mathrm{h}}{2 \pi}\right]$

Chemical Thermodynamic

IUPAC Sign convention about Heat and Work:

Work done by the system = Positive
Work done on the system = Negative
$1^{\text {st }}$ Law of Thermodynamics
$\Delta \mathrm{U}=\left(\mathrm{U}_{2}-\mathrm{U}_{1}\right)=\mathrm{q}+\mathrm{W}$
Law of equipartition of energy:
$\mathrm{U}=\frac{\mathrm{f}}{2} \mathrm{nRT} \quad$ (only for ideal gas)
$\Delta E=\frac{f}{2} n R(\Delta T)$
Where $\mathrm{f}=$ degrees of freedom for that gas.
$\mathrm{F}=3$ for monoatomic
$=5$ for diatomic or linear polyatomic
$=6$ for non-linear polyatomic

Calculation of heat (q):

Total heat capacity:
$\mathrm{C}_{\mathrm{T}}=\frac{\Delta \mathrm{q}}{\Delta \mathrm{T}}=\frac{\mathrm{dq}}{\mathrm{dT}}=\mathrm{J} /{ }^{\circ} \mathrm{C}$
Molar heat capacity:

$$
\begin{aligned}
& \mathrm{C}=\frac{\Delta \mathrm{q}}{\mathrm{n} \Delta \mathrm{~T}}=\frac{\mathrm{dq}}{\mathrm{ndT}}=\mathrm{Jmole}^{-1} \mathrm{~K}^{-1} \\
& \mathrm{C}_{\mathrm{p}} \frac{\gamma \mathrm{R}}{\gamma-1} \quad \mathrm{C}_{\mathrm{v}}=\frac{\mathrm{R}}{\gamma-1}
\end{aligned}
$$

Specific heat capacity (s):
$\mathrm{S}=\frac{\Delta \mathrm{q}}{\mathrm{m} \Delta \mathrm{T}}=\frac{\mathrm{dq}}{\mathrm{ndT}}=\mathrm{Jgm}^{-1} \mathrm{~K}^{-1}$
WORK DONE (w):
Isothermal Reversible expansion/compression of an ideal gas:
$\mathrm{W}=-\mathrm{nRT} \ln \left(\frac{\mathrm{V}_{\mathrm{f}}}{\mathrm{V}_{\mathrm{i}}}\right)$
Reversible and irreversible isochoric processes.

Since $d V=0$
So $\mathrm{dW}=-\mathrm{Pext} . \mathrm{dV}=0$.

Reversible isobaric processes:

$\mathrm{W}=\mathrm{P}\left(\mathrm{V}_{\mathrm{f}}-\mathrm{V}_{\mathrm{i}}\right)$

Adiabatic reversible expansion:

$\Rightarrow \mathrm{T}_{2} \mathrm{~V}_{2}{ }^{\gamma-1}=\mathrm{T}_{1} \mathrm{~V}_{1}{ }^{\gamma-1}$

Reversible Work:

$W=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}-\mathrm{P}_{1} \mathrm{~V}_{1}}{\gamma-1}=\frac{\mathrm{nR}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)}{\gamma-1}$

Irreversible Work:

$\mathrm{W}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}-\mathrm{P}_{1} \mathrm{~V}_{1}}{\gamma-1}=\frac{\mathrm{nR}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)}{\gamma-1} \mathrm{nC}_{\mathrm{v}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)=-\mathrm{P}_{\text {ext }}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)$
And use $\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$
Free expansion-Always going to be irreversible and since $P_{\text {ext }}=0$
So $d W=-P_{\text {ext. }} . d V=0$
If no. heat is supplied $q=0$
Then $\Delta \mathrm{E}=0 \quad \mathrm{SO} \Delta \mathrm{T}=0$.

Application of Ist Law:

$\Delta \mathrm{U}=\Delta \mathrm{Q}+\Delta \mathrm{W} \Rightarrow \Delta \mathrm{W}=-\mathrm{P} \Delta \mathrm{V}$
$\therefore \Delta \mathrm{U}=\Delta \mathrm{Q}-\mathrm{P} \Delta \mathrm{V}$

Constant volume process:

Heat given at constant volume = change in internal energy
$\therefore \mathrm{du}=(\mathrm{dq})_{\mathrm{v}}$
$\mathrm{du}=\mathrm{nC}_{\mathrm{v}} \mathrm{dT}$
$\mathrm{C}_{\mathrm{v}}=\frac{1}{\mathrm{n}} \cdot \frac{\mathrm{du}}{\mathrm{dT}}=\frac{\mathrm{f}}{2} \mathrm{R}$

Constant pressure process:

$\mathrm{H}=$ Enthalpy (state function and extensive property)
$\mathrm{H}=\mathrm{U}+\mathrm{PV}$
$\Rightarrow \mathrm{C}_{\mathrm{P}}-\mathrm{C}_{\mathrm{V}}=\mathrm{R}$ (Only for ideal gas)

Second Law of Thermodynamics:

$\Delta \mathrm{S}_{\text {universe }}=\Delta \mathrm{S}_{\text {system }}+\Delta \mathrm{S}_{\text {surrounding }}>0$ for a spontaneous process.

Entropy(S):

$\Delta S_{\text {system }}=\int_{A}^{B} \frac{\mathrm{dq}_{\text {rev }}}{T}$

Entropy calculation for an ideal gas undergoing a process:

State A $\xrightarrow[\Delta \mathrm{irr}_{\mathrm{irr}}]{\mathrm{ir}}$ StateB
$\mathrm{P}_{1} \mathrm{~V}_{1} \mathrm{~T}_{1} \quad \mathrm{P}_{2} \mathrm{~V}_{2} \mathrm{~T}_{2}$
$\Delta \mathrm{S}_{\text {system }}=\mathrm{nc}_{\mathrm{v}} \operatorname{In} \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}+\mathrm{nR} \operatorname{In} \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}$ (Only for an ideal gas)
Gibb's free energy (G): (State function and an extensive property)
$\mathrm{G}_{\text {system }}=\mathrm{H}_{\text {system }}-\mathrm{TS}_{\text {system }}$

Criteria of spontaneity:

(i) If $\Delta \mathrm{G}_{\text {system }}$ is (-ve) $<0 \Rightarrow$ process is spontaneous
(ii) If $\Delta \mathrm{G}_{\text {system }}$ is $(+)>0 \Rightarrow$ process is non spontaneous
(iii) If $\Delta G_{\text {system }}=0 \Rightarrow$ system is at equilibrium.

Physical interpretation of ΔG :

The maximum amount of non-expansional (compression) work which can be performed.
$\Delta \mathrm{G}=\mathrm{dw}_{\text {non-exp }}=\mathrm{dH}-\mathrm{TdS}$.

Standard Free Energy Change ($\Delta \mathbf{G}^{\circ}$):

1. $\Delta G^{\circ}=-2.303 R T \log _{10} K_{\text {eq }}$
$\mathrm{K}_{\text {eq }}=$ equilibrium constant
2. At equilibrium $\Delta \mathrm{G}=0$
3. The decrease in free energy $(-\Delta G)$ is given as:

$$
-\Delta \mathrm{G}=\mathrm{W}_{\text {net }}=2.303 \mathrm{nRT} \log _{10} \frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}}
$$

4. $\Delta \mathrm{G}_{\mathrm{f}}^{\circ}$ for elemental state $=0$
5. $\quad \Delta \mathrm{G}_{\mathrm{f}}^{\circ}=\mathrm{G}_{\text {Products }}^{\circ}-\mathrm{G}_{\text {Reactan ts }}^{\circ}$

Thermochemistry:

Change in standard enthalpy
$\Delta \mathrm{H}^{\circ}=\mathrm{H}_{\mathrm{m}, 2}^{\circ}-\mathrm{H}_{\mathrm{m}, 1}^{\circ}$
=heat added at constant pressure
$=C_{p} \Delta T$
If $\mathrm{H}_{\text {products }}>\mathrm{H}_{\text {reactants }}$
$\rightarrow \quad$ Reaction will be endothermic as we have to supply extra heat to reactants to convert it into products

If $\mathrm{H}_{\text {products }}<\mathrm{H}_{\text {reactants }}$
$\rightarrow \quad$ Reaction will be exothermic as extra heat content of reactants will be released during the reaction.
Enthalpy change of a reaction:
$\Delta \mathrm{H}^{\circ}{ }_{\text {reactions }}=\mathrm{H}_{\text {products }}^{\circ}-\mathrm{H}_{\text {reactants }}^{\circ}$
$=$ Positive \rightarrow endothermic
$=$ negative \rightarrow exothermic

Temperature Dependence of $\Delta \mathrm{H}$: (Kirchoff's equation)

For a constant volume reaction
$\Delta \mathrm{H}_{2}{ }^{\circ}=\Delta \mathrm{H}_{1}{ }^{\circ}+\Delta \mathrm{C}_{\mathrm{P}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
Where $\Delta \mathrm{C}_{\mathrm{p}}=\mathrm{C}_{\mathrm{p} \text { (Products) }}-\mathrm{C}_{\mathrm{p} \text { (reactants) }}$
For $\Delta \mathrm{C}_{\mathrm{p}}=\mathrm{C}_{\mathrm{p}(\text { Products) })}-\mathrm{C}_{\mathrm{p} \text { (reactants) }}$
For a constant volume reaction
$\Delta E_{2}^{\circ}=\Delta E_{1}^{\circ}+\int \Delta C_{v} . d T$

Enthalpy of Reaction from Enthalpies of Formation:

The enthalpy of reaction can be calculated by
$\Delta \mathrm{H}_{\mathrm{r}}^{\circ}=\sum \nu_{\mathrm{B}} \Delta \mathrm{H}_{\mathrm{f} \text { products }}^{\circ}-\sum \nu_{\mathrm{B}} \Delta \mathrm{H}_{\mathrm{f} \text {,reactants }}^{\circ}$
V_{B} is the stoichiometric coefficient.

Estimation of Enthalpy of a reaction from bond Enthalpies:
$\Delta \mathrm{H}=\left(\begin{array}{l}\text { Enthalpy required } \\ \text { to break reactants in } \\ \text { to gasesous atoms }\end{array}\right)-\left(\begin{array}{l}\text { Enthalpy released to } \\ \text { form products from the } \\ \text { gasesous atoms }\end{array}\right)$

Resonance Energy:

$$
\begin{aligned}
\Delta \mathrm{H}_{\text {resonance }}^{\circ} & =\Delta \mathrm{H}_{\mathrm{f}, \text { experimental }}^{\circ} \cdot \Delta \mathrm{H}_{\mathrm{f}, \text { calclulated }} \\
& =\Delta \mathrm{H}_{\mathrm{c}, \text { calculated }}^{\circ} \cdot \Delta \mathrm{H}_{\mathrm{c}, \text { experimental }}^{\circ}
\end{aligned}
$$

Solid State

- Classification of Crystal into Seven System

Crystal System	Unit cell Dimensions and angles	Bravais Example	Lattices
Cubic	$\mathrm{a}=\mathrm{b}=\mathrm{c} ; \alpha=\beta=\gamma=90^{\circ}$	SC, BCC, FCC	NaCl
Orthorhombic	$\mathrm{a} \neq \mathrm{b} \neq \mathrm{c} ; \alpha=\beta=\gamma=90^{\circ}$	SC, BCC, end centred \& FCC	S_{R} (Rhombic Sulfur)
Tetragonal	$\mathrm{a}=\mathrm{b} \neq \mathrm{c} ; \alpha=\beta=\gamma=90^{\circ}$	SC, BCC	$\mathrm{Sn}, \mathrm{ZnO} 2$
Monoclinic	$\mathrm{a} \neq \mathrm{b} \neq \mathrm{c} ; \alpha=\gamma=90^{\circ} \neq \beta$	SC, end centred	Sm_{m} (Monoclinic Sulfur)
Rhombohedral	$\mathrm{a}=\mathrm{b}=\mathrm{c} ; \alpha=\beta=\gamma=90^{\circ}$	SC	Quartz
Triclinic	$\mathrm{a} \neq \mathrm{b} \neq \mathrm{c} ; \alpha \neq \beta \neq \gamma \neq 90^{\circ}$	SC	$\mathrm{H}_{3} \mathrm{BO}_{3}$
Hexagonal	$\begin{aligned} & a=b \neq c ; \alpha=\beta=90^{\circ} ; \gamma= \\ & 120^{\circ} \end{aligned}$	SC	Graphite

- ANALYSIS OF CUBICAL SYSTEM

i.	Property	SC	BCC	FCC
	atomic radius (r)	a	$\sqrt{3} \mathrm{a}$	a
	$\mathrm{a}=$ edge length	$\overline{2}$	4	$\overline{2 \sqrt{2}}$
ii.	No. of atoms per			
	unit cell (Z)	1	2	4
iii.	C.No.	6	8	12
iv.	Packing efficiency	52\%	68\%	74\%
v.	No. of voids			
	(a) octahedral (Z)	-	-	4
	(b) Tetrahderal (2Z)	-	-	8

- NEIGHBOUR HOOD OF APARTICLE :

I. Simple Cubic (SC) Structure:

Type of neighbour	Distance	no.of neighbours
nearest	a	6 (shared by 4 cubes)
(next) 1	$\mathrm{a} \sqrt{2}$	12 (shared by 2 cubes)
(next) 2	$\mathrm{a} \sqrt{3}$	8 (unshared)

II. Body Centered Cubic (BCC) Structure:

Type of neighbour nearest	Distance	no.of neighbours
	$2 \mathrm{r}=\mathrm{a} \frac{\sqrt{3}}{2}$	8
$(\mathrm{next})^{1}$	$=\mathrm{a}$	6
(next 2	$=\mathrm{a} \sqrt{2}$	12
(next 3	$=\mathrm{a} \frac{\sqrt{3}}{2}$	24
$(\text { next })^{4}$	$=\mathrm{a} \sqrt{3}$	8

III. Face Centered Cubic (FCC) Structure :

Type of neighbor	Distance	no. of neig
nearest	$\frac{a}{\sqrt{2}}$	$12=\left(\frac{3 \times 8}{2}\right)$
(next) 1	a	$6=\left(\frac{3 \times 8}{4}\right)$
(next) 2	$a \sqrt{\frac{3}{\sqrt{2}}}$	24
(next) 3	$a \sqrt{2}$	12
(next) 4	$a \sqrt{\frac{5}{\sqrt{2}}}$	24

- DENSITY OF LATTICE MATTER (d) $=\frac{\mathrm{Z}}{\mathrm{N}_{\mathrm{A}}}\left(\frac{\mathrm{M}}{\mathrm{a}^{3}}\right)$
where $N_{A}=$ Avogadro's No. $M=$ atomic mass or molecular mass.
- IONIC CRYSTALS
C.No. Limiting radius ratio $\left(\frac{r_{+}}{r_{-}}\right)$
$3 \quad 0.155-0.225$ (Triangular)
4 0.225-0.414 (Tetrahedral)
$6 \quad 0.414-0.732$ (Octahedral)
8 0.732-0.999 (Cubic).
- EXAMPLES OF A IONIC CRYSTAL
a. Rock Salt (NaCl) Coordination number ($6: 6$)
b. CsCl C.No. (8:8)

Edge length of unit cell :-

$$
\mathrm{a}_{\mathrm{fcc}}=\frac{4}{\sqrt{3}}\left(\mathrm{r}_{\mathrm{ca}^{2+}+\mathrm{r}_{3^{-}}}\right)
$$

c. Zinc Blende (ZnS) C.No.(4:4)

$$
\mathrm{a}_{\mathrm{fcc}}=\frac{4}{\sqrt{3}}\left(\mathrm{r}_{\mathrm{Zn}^{2+}}+\mathrm{r}_{\mathrm{F}}\right)
$$

d. Fluorite structure (CaF2) C.No. (8:4)

$$
\mathrm{a}_{\mathrm{fcc}}=\frac{4}{\sqrt{3}}\left(\mathrm{r}_{\mathrm{ca}^{2+}}+\mathrm{r}_{\mathrm{F}^{-}}\right)
$$

1. OSMOTIC PRESSURE:

i. $\pi=\rho g h$

Where, $\rho=$ density of solution, $\mathrm{h}=$ equilibrium height.
ii. Van't-Hoff Formula (For calculation of O.P.)

$$
\begin{aligned}
\pi & =C R T=\frac{\mathrm{n}}{\mathrm{~V}} \mathrm{RT} \text { (like ideal gas equation) } \\
\therefore \mathrm{C} & =\text { total conc. of all types of particles } \\
& =\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}+\ldots \\
& =\frac{\left(\mathrm{n}_{1}+\mathrm{n}_{2}+\mathrm{n}_{3}+\ldots . . .\right)}{\mathrm{V}}
\end{aligned}
$$

Note: If $\mathrm{V}_{1} \mathrm{ml}$ of C_{1} conc. $+\mathrm{V}_{2} \mathrm{ml}$ of C_{2} conc. are mixed.

$$
\pi=\left(\frac{\mathrm{C}_{1} \mathrm{~V}_{1}+\mathrm{C}_{2} \mathrm{~V}_{2}}{\mathrm{~V}_{1}+\mathrm{V}_{2}}\right) \mathrm{RT} \quad ; \quad \pi=\left(\frac{\pi_{1} \mathrm{~V}_{1}+\pi_{2} \mathrm{~V}_{2}}{\mathrm{RT}}\right)
$$

Type of solutions:

a. Isotonic solution-Two solutions having same $0 . P \pi_{1}=\pi_{2}$ (at same temp.)
b. Hyper tonic- If $\pi_{1}>\pi_{2} \quad \Rightarrow I^{\text {st }}$ solution is hypertonic solution w.r.t. II ${ }^{\text {nd }}$ solution.
c. Hypotonic-II ${ }^{\text {nd }}$ solution is hypotonic w.r.t. ${ }^{\text {st }}$ solution.

Abnormal Colligative Properties (In case of association or dissociation)

VAN'T HOFF CORRECTION FACTOR (i):

$$
\begin{aligned}
\mathrm{i} & =\frac{\text { Exp/Observed/Actual/Abnormal valueof colligative property }}{\text { Theoritical value of colligative property }} \\
& =\frac{\text { Exp./Observed no.of particles/Conc. }}{\text { Theoritical no.of particles }}=\frac{\text { Observed molality }}{\text { Theoritical molality }} \\
& =\frac{\text { Theoretical molar mass(formula mass) }}{\text { Theoretical/Observedmolarmass(apparent molar mass) }}
\end{aligned}
$$

- i>1 $\quad \Rightarrow$ dissociation.
$\mathrm{I}<1 \Rightarrow$ association.
- $i=\frac{\pi_{\exp }}{\pi_{\text {theor }}}$
$\therefore \pi=\mathrm{iCRT}$
$\pi=$ (iCRT)
$\pi=\left(\mathrm{i}_{1} \mathrm{C}_{1}+\mathrm{i}_{2} \mathrm{C}_{2}+\mathrm{i}_{3} \mathrm{C}_{3} \ldots \ldots.\right) \mathrm{RT}$

Relation between i \& α (degree of dissociation):

$\mathrm{i}=1+(\mathrm{n}-1) \alpha$; where, $\mathrm{n}=\mathrm{x}+\mathrm{y}$
Relation between degree of association β \& i.
$\mathrm{i}=1+\left(\frac{1}{\mathrm{n}}-1\right) \beta$

2. RELATIVE LOWERING OF VAPOUR PRESSURE (RLVP):

Vapour pressure: $\mathrm{P}_{\text {soln. }}<\mathrm{P}$
Lowering in $\mathrm{VP}=\mathrm{P}=\mathrm{P}_{3}=\Delta \mathrm{P}$
Relative lowering in vapour pressure $R L V P=\frac{\Delta P}{P}$
Raoult's law: - (For non-volatile solutes)
Experimentally relative lowering in V.P = mole fraction of the non-volatile solute in solutions.

$$
R L V P=\frac{P-P_{s}}{P}=X_{\text {solute }}=\frac{n}{n+N}
$$

Where, $\mathrm{n}=\mathrm{No}$. of moles of solute; $\mathrm{N}=\mathrm{No}$. of moles of solvent

$$
\frac{P-P_{s}}{P_{s}}=\frac{n}{N}
$$

$$
\begin{aligned}
& \frac{\mathrm{P}-\mathrm{P}_{\mathrm{s}}}{\mathrm{P}_{\mathrm{s}}}=(\text { molality }) \times \frac{\mathrm{M}}{1000} \\
& (\mathrm{M}=\text { molar mass of solvent })
\end{aligned}
$$

It solute gets associated or dissociated
$\frac{P-P_{s}}{P_{s}}=\frac{i . n}{N}$
$\frac{P-P_{s}}{P_{s}}=i \times($ molality $) \times \frac{M}{1000}$

- According to Raoult's law:
i. $\quad \mathrm{P}_{1}=\mathrm{P}_{1}{ }^{0} \mathrm{X}_{1}$; Where X_{1} is the mole fraction of the solvent (liquid).
ii. An alternate form $\rightarrow \frac{\mathrm{p}_{1}^{0}-\mathrm{p}_{1}}{\mathrm{p}_{1}^{0}}=\mathrm{X}_{2}$
X_{2} is the mole fraction of the solvent
- Ostwald-Walker Method: Experimental or lab determination of
$\frac{\Delta \mathrm{P}}{\mathrm{P}}$ or $\frac{\Delta \mathrm{P}}{\mathrm{Ps}}$
$\frac{P-P_{s}}{P_{s}}=\frac{\text { Loss in wt. of solvent }}{\text { Loss in wt. of solution }}$
$\frac{P-P_{s}}{P_{s}}=\frac{\text { Loss in wt. of solvent }}{\text { Gain in wt. of dehydrating agent }}$

3. ELEVATION IN BOILING POINT:

$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{i} \times \mathrm{K}_{\mathrm{b}} \times \mathrm{m}$

Where, $\Delta \mathrm{T}_{\mathrm{b}}=$ Boiling point elevation; $\mathrm{K}_{\mathrm{b}}=$ Boiling point elevation constant; $\mathrm{m}=$ molality of the solution
$\mathrm{K}_{\mathrm{b}}=\frac{\mathrm{RT}_{\mathrm{b}}^{2}}{1000 \times \mathrm{L}_{\text {vap }}} \quad$ OR $\quad \mathrm{K}_{\mathrm{b}}=\frac{\mathrm{RT}_{\mathrm{b}}^{2} \mathrm{M}}{1000 \times \Delta \mathrm{H}_{\text {vap }}}$
$\mathrm{L}_{\text {vap }}=\left(\frac{\Delta \mathrm{H}_{\text {vap }}}{\mathrm{M}}\right)$
$\Delta H_{\text {vap }}=$ Enthalpy of vaporization
4. DEPRESSION IN FREEZING POINT
$\therefore \Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \times \mathrm{K}_{\mathrm{f}} \times \mathrm{m}$
$\mathrm{K}_{\mathrm{f}}=$ molal depression constant $=\frac{\mathrm{RT}_{\mathrm{f}}^{2}}{1000 \times \mathrm{L}_{\text {fusion }}}=\frac{\mathrm{RT}_{\mathrm{f}}^{2}}{1000 \times \Delta \mathrm{H}_{\text {fusion }}}$
RAOULT'S LAW FOR BINARY (IDEAL) MIXTURE OF VOLATILE LIQUIDS:
$\mathrm{P}_{\mathrm{A}}=\mathrm{X}_{\mathrm{A}} \mathrm{P}_{\mathrm{A}}{ }^{\circ}$
$\therefore \mathrm{PB}_{\mathrm{B}}=\mathrm{X}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}}{ }^{\circ}$
If $\mathrm{XA}^{\circ}>\mathrm{X}^{\circ}{ }^{\circ} \quad \therefore \mathrm{A}$ is more volatile than B
\therefore B.P of A<B.P of B
\therefore According to Dalton's law
$\mathbf{P}_{\mathrm{T}}=\mathbf{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}=\mathrm{X}_{\mathrm{A}} \mathbf{P}_{\mathrm{A}}{ }^{\circ}+\mathrm{X}_{\mathrm{B}} \mathbf{P}^{\mathbf{0}}{ }_{\mathrm{B}}$
$\mathrm{X}_{A^{\prime}}=$ mole fraction of A in vapour about the liquid/ solution.
$X_{B}{ }^{\prime}=$ mole fraction of B
$\mathbf{P}_{\mathrm{A}}=\mathbf{X}_{\mathrm{A}} \mathbf{P}_{\mathrm{A}}{ }^{\circ}=\mathbf{X}_{\mathrm{A}}{ }^{\prime} \mathbf{P}_{\mathbf{T}}$
$\mathbf{P}_{\mathrm{B}}=\mathrm{X}_{\mathrm{B}} \mathbf{P}_{\mathrm{T}}=\mathrm{X}_{\mathrm{B}} \mathrm{P}_{\mathrm{B}}{ }^{\circ}$
$\frac{1}{\mathrm{P}_{\mathrm{T}}}=\frac{\mathrm{X}_{\mathrm{A}}{ }^{\prime}}{\mathrm{P}_{\mathrm{A}}{ }^{\prime}}+\frac{\mathrm{X}_{\mathrm{B}}{ }^{\prime}}{\mathrm{P}_{\mathrm{B}}{ }^{\prime}}$

Graphical Representation:

A more volatile than $B\left(\mathrm{P}_{\mathrm{A}}{ }^{\circ}>\mathrm{P}_{\mathrm{B}}{ }^{\circ}\right)$

Ideal solutions (mixtures):

Mixtures which follow Raoul'ts law at all temperature.

A------B
$\Delta H_{\text {mix }}=0 \quad: \Delta \mathrm{V}_{\text {mix }}=0 \quad: \Delta \mathrm{S}_{\text {mix }}=+\mathrm{ve}$ as for process to proceed: $\Delta \mathrm{G}_{\text {mix }}=-\mathrm{ve}$
Eg.

1) Benzene + Toluene
2) Hexane +heptane.
3) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$

Non-Ideal solutions: Which do not obey Raoult's law
a. Positive deviation:-
i. $\quad \mathrm{P}_{\text {T.exp }}>\left(\mathrm{X}_{\mathrm{A}} \mathrm{P}_{\mathrm{A}}{ }^{0}+\mathrm{X}_{\mathrm{B}} \mathrm{P}_{\mathrm{B}}{ }^{0}\right)$
ii.

(Weak force of attraction)
iii. $\Delta H_{\text {mix }}=+$ ve energy absorbed
iv. $\Delta V_{\text {mix }}=+$ ve $(1 \mathrm{~L}+1 \mathrm{~L}>2 \mathrm{~L})$
v. $\Delta \mathrm{S}_{\text {mix }}=+\mathrm{ve}$
vi. $\Delta \mathrm{G}_{\text {mix }}=$.ve

Eg.
$\mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3} \mathrm{OH}$
$\mathrm{H}_{2} \mathrm{O}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+$ hexane
$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{OH}+$ cyclohexane.
$\mathrm{CHCl}_{3}+\mathrm{CCl} \rightarrow$ dipole dipole interaction becomes weak.

$$
\mathrm{P}^{0} \mathrm{~A}>\mathrm{P}^{0} \mathrm{~B}
$$

b. Negative deviation
i. Ртехр $<$ хар $^{\circ}+$ хвр $^{\circ}$ в
ii.

iii. $\Delta \mathrm{H}_{\text {mix }}=-\mathrm{ve}$
iv. Δ Vmix $=-$ ve $(1 \mathrm{~L}+1 \mathrm{~L}<2 \mathrm{~L})$
v. Δ Smix $=+\mathrm{ve}$
vi. $\Delta \mathrm{Gmix}=-\mathrm{ve}$
eg.
$\mathrm{H}_{2} \mathrm{O}+\mathrm{HCOOH}$
$\mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3} \mathrm{COOH}$
$\mathrm{H}_{2} \mathrm{O}+\mathrm{HNO}_{3}$

$\mathrm{P}^{0} \mathrm{~A}>\mathrm{P}^{0} \mathrm{~B}$

Immiscible Liquids:
(i) $\mathrm{P}_{\text {tota }}=\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}$
(ii) $\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\mathrm{A}}{ }^{0} \mathrm{X}_{\mathrm{A}}=\mathrm{P}_{\mathrm{A}^{0}} \quad\left[\right.$ Since, $\left.\mathrm{X}_{A}=1\right]$.
(iii) $\mathrm{P}_{\mathrm{B}}=\mathrm{P}_{\mathrm{B}}{ }^{0} \mathrm{X}_{\mathrm{B}}=\mathrm{P}_{\mathrm{B}}{ }^{0}$
[Since, $X_{B}=1$].
(iv) $\mathrm{P}_{\text {total }}=\mathrm{P}_{\mathrm{A}}{ }^{0}+\mathrm{P}_{\mathrm{B}}{ }^{\circ}$
(v) $\frac{\mathrm{P}_{\mathrm{A}}^{\circ}}{\mathrm{P}_{\mathrm{B}}^{\circ}}=\frac{\mathrm{n}_{\mathrm{A}}}{\mathrm{n}_{\mathrm{B}}}$
(vi) $\frac{P_{A}^{\circ}}{P_{B}^{\circ}}=\frac{W_{A} M_{B}}{M_{A} W_{B}}$
$P_{A}^{\circ}=\frac{n_{A} R T}{V} ; \quad P_{B}{ }^{\circ}=\frac{n_{B} R T}{V}$

B.P. of solution is less than the individual B.P.'s of both the liquids.

Henry Law:

$m \alpha$ P
$\mathrm{m}=\mathrm{kp}$
$\mathrm{m} \rightarrow \frac{\text { Weight of gas }}{\text { Volume of liquid }}$

Equilibrium

Equilibrium constant (K):

$\mathrm{K}=\frac{\text { rate cons } \tan t \text { of forward reaction }}{\text { rate constant of backward reaction }}=\frac{\mathrm{K}_{\mathrm{f}}}{\mathrm{K}_{\mathrm{b}}}$
Equilibrium constant in terms of concentration (Kc):
$\frac{\mathrm{K}_{\mathrm{f}}}{\mathrm{K}_{\mathrm{b}}}=\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}}}{[\mathrm{A}]^{\mathrm{a}}[\mathrm{B}]^{\mathrm{b}}}$
Equilibrium constant in terms of partial pressure (K_{P}):
$\mathrm{K}_{\mathrm{p}}=\frac{\left[\mathrm{P}_{\mathrm{C}}\right]^{\mathrm{c}}\left[\mathrm{P}_{\mathrm{D}}\right]^{\mathrm{d}}}{\left[\mathrm{P}_{\mathrm{A}}\right]^{\mathrm{a}}\left[\mathrm{P}_{\mathrm{B}}\right]^{\mathrm{b}}}$
Equilibrium constant in terms of mole fraction (K_{x}):
$\mathrm{K}_{\mathrm{x}}=\frac{\mathrm{X}_{\mathrm{C}}^{\mathrm{c}} \mathrm{X}_{\mathrm{D}}^{\mathrm{d}}}{\mathrm{X}_{\mathrm{A}}^{\mathrm{a}} \mathrm{X}_{\mathrm{B}}^{\mathrm{b}}}$
Relation between K_{p} \& K_{c} :
$K_{p}=K_{c} .(R T)^{\Delta n}$.
Relation between K_{p} \& Kx :
$K_{P}=K_{x}(P)^{\Delta n}$
$\log \frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=\frac{\Delta \mathrm{H}}{2.303 \mathrm{R}}\left[\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right] ; \Delta \mathrm{H}=$ Enthalpy of reaction
Relation between equilibrium constant \& standard free energy change:
$\Delta \mathrm{G}^{\circ}=-2.303 \mathrm{RT} \log \mathrm{K}$
Reaction Quotient (Q):
The values of expression $Q=\frac{[C]^{c}[D]^{d}}{[A]^{d}[B]^{b}}$

Degree of Dissociation (α):

$\alpha=$ no. of moles dissociated / initial no. of moles taken
$=$ fraction of moles dissociated out of 1 mole.
Note: \% dissociation $=\alpha \times 100$
Observed molecular weight and Observed Vapour Density of the mixture:
Observed molecular weight
$=\frac{\text { molecular weight of equilibrium mixture }}{\text { total no.of moles }}$
$\alpha=\frac{D-d}{(n-1) \times d}=\frac{M_{T}-M_{\circ}}{(n-1) M_{\circ}} \quad\left[(\text { Vapour density })_{\text {initial }}=D,(\text { Vapour density })_{e q}=d\right]$
[Theoritical molecular weight= M_{T}, Observed molecular weight $=\mathrm{M}_{\mathrm{o}}$]

Vapour Pressure of Liquid:

Relative Humidity $=\frac{\text { Partial Pr essure of } \mathrm{H}_{2} \mathrm{O} \text { vapours }}{\text { Vapour pressure of } \mathrm{H}_{2} \mathrm{O} \text { at that temp. }}$
Thermodynamics of Equilibrium:
$\Delta G=\Delta G^{0}+2.303 R T \log _{10} Q$
Vant Hoff equation: $\log \left(\frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}}\right)=\frac{\Delta \mathrm{H}^{\circ}}{2.303 \mathrm{R}}\left(\frac{1}{\mathrm{~T}_{2}}-\frac{1}{\mathrm{~T}_{1}}\right)$

IONIC EQUILIBRIUM

1. OSTWALD DILUTION LAW:

- Dissociation constant of weak acid (K_{a}),
$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{\mathrm{HA}}=\frac{[\mathrm{C} \alpha][\mathrm{C} \alpha]}{\mathrm{C}(1-\alpha)}=\frac{\mathrm{C} \alpha^{2}}{1-\alpha}$
If $\alpha \ll 1$, then $1-\alpha \cong 1$ or $K_{a}=c a^{2}$ or $\alpha=\sqrt{\frac{K_{b}}{C}}=\sqrt{K_{a} \times V}$
- Similarly for a weak base, $\alpha=\sqrt{\frac{k_{b}}{C}}$.Higher the value of K_{a} / K_{b}, strong is the acid/base.

Acidity and pH scale:
$\therefore \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$is the activity of H^{+}ions $=$molar concentration for dilute solution.
[Note: pH can also be negative or >14]
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] ; \quad\left[\mathrm{H}^{+}\right]=10-\mathrm{pH}$
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] ;\left[\mathrm{OH}^{-}\right]=10-\mathrm{poH}$
$\mathrm{pKa}=-\log \mathrm{Ka} ; \quad \mathrm{Ka}=10^{-\mathrm{pKa}}$
$\mathrm{pKb}=-\log \mathrm{Kb} ; \quad \mathrm{Kb}=10^{-\mathrm{pkb}}$
PROPERTIES OF WATER:

1. In pure water $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$, so it is Neutral.
2. Moler concentration of water $=55.56 \mathrm{M}$

3. Ionic product of water (K^{w}):

$\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}$ at 25° (experimentally)
$\mathrm{pH}=7=\mathrm{pOH} \quad \Rightarrow \quad$ neutral
$\mathrm{pH}<7$ or $\mathrm{pOH}>7 \quad \Rightarrow \quad$ acidic
$\mathrm{pH}>7$ or $\mathrm{pOH}<7 \quad \Rightarrow \quad$ Basic

4. Degree of dissociation of water $\left(\mathrm{K}_{\mathrm{w}}\right)$:

$\alpha=\frac{\text { no.of moles dissociate }}{\text { Total No.of moles in itially taken }}=\frac{10^{-7}}{55.55}=18 \times 10^{-10}$ Or $1.8 \times 10^{-7} \%$
5. Absolute dissociation constant of water:
$\mathrm{K}_{\mathrm{a}}=\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]}=\frac{10^{-7} \times 10^{-7}}{55.55}=1.8 \times 10^{-16}$
$\mathrm{pK} \mathrm{K}_{\mathrm{a}}=\mathrm{pK} \mathrm{b}_{\mathrm{b}}=-\log \left(1.8 \times 1^{-16}\right)=16-\log 1.8=15.74$
$\mathbf{K a}_{\mathbf{a}} \times \mathbf{K b}_{\mathbf{b}}=\left[\mathrm{H}^{+}\right]\left[\mathbf{O H}^{-}\right]=\mathbf{K}_{\mathbf{w}}$
\Rightarrow Note: for a conjugate acid-base pairs
$\mathrm{pK}_{\mathrm{a}}+\mathrm{pK} K_{b}=\mathrm{pK}=14 \quad$ at $25^{\circ} \mathrm{C}$
$\mathrm{pK} \mathrm{a}_{\mathrm{a}}$ of $\mathrm{H}_{3}{ }^{+}$ions $=-1.74$
pKbof $0 H$-ions $=-1.74$.

- pH Calculations of Different Types of Solutions:
a. Strong acid solution:
i. If concentration is greater than 10.6 M

In this case $\mathrm{H}+$ ions coming from water can be neglected,
ii. If concentration is less than 10.6 M

In this case $\mathrm{H}+$ ions coming from water cannot be neglected
b. Strong base solution:

Using similar method as in part (a) calculate first $[\mathrm{OH}]$ and then use $\left[\mathrm{H}^{+}\right] \times\left[\mathrm{OH}^{-}\right]=10^{-14}$
c. $\mathbf{p H}$ of mixture of two strong acids :

Number of $\mathrm{H}+$ ions from I-solution $=\mathrm{N}_{1} \mathrm{~V}_{1}$
Number of $\mathrm{H}+$ ions from II-solution $=\mathrm{N}_{2} \mathrm{~V}_{2}$
$\left[\mathrm{H}^{+}\right]=\mathrm{N}=\frac{\mathrm{N}_{1} \mathrm{~V}_{1}+\mathrm{N}_{2} \mathrm{~V}_{2}}{\mathrm{~V}_{1}+\mathrm{V}_{2}}$
d. $\mathbf{p H}$ of mixture of two strong bases:
$\left[\mathrm{OH}^{-}\right]=\mathrm{N}=\frac{\mathrm{N}_{1} \mathrm{~V}_{1}+\mathrm{N}_{2} \mathrm{~V}_{2}}{\mathrm{~V}_{1}+\mathrm{V}_{2}}$
e. $\mathbf{p H}$ of mixture of a strong acid and a strong base:

If $N_{1} V_{1}>N_{2} V_{2}$, then solution will be acidic in nature and
$\left[\mathrm{H}^{+}\right]=\mathrm{N}=\frac{\mathrm{N}_{1} \mathrm{~V}_{1}-\mathrm{N}_{2} \mathrm{~V}_{2}}{\mathrm{~V}_{1}+\mathrm{V}_{2}}$
If $N_{2} V_{2}>N_{1} V_{1}$, then solution will be basic in nature and
$\left[\mathrm{OH}^{-}\right]=\mathrm{N}=\frac{\mathrm{N}_{2} \mathrm{~V}_{2}-\mathrm{N}_{1} \mathrm{~V}_{1}}{\mathrm{~V}_{1}+\mathrm{V}_{2}}$
f. $\mathbf{p H}$ of a weak acid(monoprotic) solution :
$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{+}\right]}{[\mathrm{HA}]}=\frac{\mathrm{C}^{2}}{1-\alpha}$
if $\alpha \ll 1(1-\alpha) \approx 1 \Rightarrow K_{a} \approx C \alpha^{2}$
$\alpha=\sqrt{\frac{K_{\mathrm{a}}}{\mathrm{C}}}$ (is valid if $\alpha<0.1$ or 10%)
On increasing the dilution $\Rightarrow \mathrm{C} \downarrow \Rightarrow \alpha \uparrow$ and $\left[\mathrm{H}^{+}\right] \downarrow \Rightarrow \mathrm{pH} \uparrow$
g. $\mathbf{p H}$ of a solution of a polyprotic weak acid
$\mathrm{pH}=\frac{1}{2}(\mathrm{pKa}-\log \mathrm{C})$.

RELATIVE STRENGTH OF TWO ACIDES
$\frac{\left[\mathrm{H}^{+}\right] \text {furnished by Iacid }}{\left[\mathrm{H}^{+}\right] \text {furnished by II acid }}=\frac{\mathrm{c}_{1} \alpha_{1}}{\mathrm{c}_{1} \alpha_{1}}=\sqrt{\frac{\mathrm{K}_{\mathrm{a}_{1}} \mathrm{c}_{1}}{\mathrm{~K}_{\mathrm{a}_{2}} \mathrm{c}_{2}}}$
h. $\mathbf{p H}$ of a mixture of two weak acid(both monoprotic) solutions:
$\left[\mathrm{H}^{+}\right]=\sqrt{\mathrm{K}_{\mathrm{a} 1} \mathrm{C}_{1}+\mathrm{K}_{\mathrm{a} 2} \mathrm{C}_{2}+\mathrm{K}_{\mathrm{w}}}$
$\mathrm{C}_{\mathrm{w}} \mathrm{K}_{\mathrm{w}}=10^{-14}=\mathrm{K}_{\mathrm{w}}$
$\left[\mathrm{H}^{+}\right]=\sqrt{\mathrm{C}_{1} \mathrm{~K}_{\mathrm{a} 1}+\mathrm{C}_{2} \mathrm{~K}_{\mathrm{a} 2}+10^{-14}}$
i. pH of a mixture of weak acid(monoprotic)and a strong acid solution:

If $[\mathrm{SA}]=\mathrm{C}_{1}$ and $[\mathrm{WA}]=\mathrm{C}_{2}$, then $\left[\mathrm{H}^{+}\right]$from $\mathrm{SA}=\mathrm{C}_{1}$ and $\left[\mathrm{H}^{+}\right]$from $\mathrm{WA}=\mathrm{C}_{2}$
Let HA is a weak acid.
$\left[\mathrm{H}^{+}\right]=\frac{\mathrm{C}_{1}+\sqrt{\mathrm{C}_{1}^{2}+4 \mathrm{~K}_{\mathrm{a} .} \mathrm{C}_{2}}}{2}$
** If a strong acid of low conc is added in water then [H+] of solution can be calculated as
$\left[\mathrm{H}^{+}\right]=\frac{\mathrm{C}_{1}+\sqrt{\mathrm{C}_{1}^{2}+4 \mathrm{~K}_{\mathrm{w}}}}{2}$

- SALT HYDROLYSIS:

Salt of

a. weak acid \& strong base anionic
b. strong acid \& weak base
c. weak acid \& weak base
d. Strong acid \& strong base

Type of hydrolysis anionic
cationic

Both
\qquad --------do not hydrolysed-------
\qquad
pH $7+\frac{1}{2} \mathrm{pk}_{\mathrm{a}}+\frac{1}{2} \log \mathrm{c}$ $7+\frac{1}{2} \mathrm{pk}_{\mathrm{b}}+\frac{1}{2} \log \mathrm{c}$ $7+\frac{1}{2} \mathrm{pk}_{\mathrm{a}}+\frac{1}{2} \mathrm{pk}_{\mathrm{b}}$
$\mathrm{pH}=7$

Hydrolysis of polyvalent anions or cations

For $\left[\mathrm{Na}_{3} \mathrm{PO}_{4}\right]=\mathrm{C}$
$\mathrm{K}_{\mathrm{a} 1} \times \mathrm{K}_{\mathrm{h} 3}=\mathrm{K}_{3}$
$\mathrm{K}_{\mathrm{a} 1} \times \mathrm{K}_{\mathrm{h} 2}=\mathrm{K}_{\mathrm{w}}$
$K_{a 3} \times K_{h 1}=K_{w}$
Generally pH is calculated only using the first step Hydrolysis
$\mathrm{K}_{\mathrm{h} 1}=\frac{\mathrm{Ch}^{2}}{1-\mathrm{h}} \approx \mathrm{Ch}^{2}$
$\mathrm{h}=\sqrt{\frac{\mathrm{K}_{\mathrm{h} 1}}{\mathrm{C}}} \Rightarrow\left[\mathrm{OH}^{-}\right]=\mathrm{ch}=\sqrt{\mathrm{Kh}_{1} \times \mathrm{c}} \Rightarrow\left[\mathrm{H}^{+}\right]=\sqrt{\frac{\mathrm{K}_{\mathrm{w}} \times \mathrm{K}_{\mathrm{a} 3}}{\mathrm{C}}}$
So, $\mathrm{pH}=\frac{1}{2}\left[\mathrm{pK}_{\mathrm{w}}+\mathrm{pK}_{\mathrm{a} 3}+\log \mathrm{C}\right]$

BUFFER SOLUTION

a. Acidic Buffer: e.g $\mathrm{NH}_{3} \mathrm{OH}+\mathrm{NH}_{4} \mathrm{Cl}$. (weak base and salt of its conjugate acid). $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\text { Salt }]}{[\text { Acid }]} \quad$ [Henderson's equation]
b. Basic Buffer: e.g. $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{NH}_{4} \mathrm{Cl}$. (Weak base and salt of its conjugate acid).
$\mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}+\log \frac{\text { [Salt }]}{[\text { Base }]}$

Buffer capacity (index):

Buffer capacity $=\frac{\text { Total no.of moles of acid } / \text { alkali added per litre Change in PH }}{\text { Change in } \mathrm{pH}}$
Buffer capacity $=\frac{\mathrm{dx}}{\mathrm{d} \Delta \mathrm{pH}}=2.303 \frac{(\mathrm{a}+\mathrm{x})(\mathrm{b}+\mathrm{x})}{\mathrm{a}+\mathrm{b}}$
INDICATOR:
$\mathrm{HIn} \rightleftharpoons \mathrm{H}^{+}+\mathrm{In}^{-}$
Or $\left[\mathrm{H}^{+}\right]=\mathrm{H}^{+} \times \frac{[\mathrm{HIn}]}{[\mathrm{In}]}$
$\therefore \mathrm{pH}=\mathrm{pK}_{\mathrm{HIn}}+\log \frac{[\mathrm{In}]}{[\mathrm{HIn}]}$
$\Rightarrow \mathrm{pH}=\mathrm{pK}_{\mathrm{HIn}}+\log \frac{\text { [Ionised form] }}{\text { [Unionised form] }}$

- ISOELECTRIC POINT:

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]=\sqrt{\mathrm{K}_{\mathrm{a} 1} \mathrm{~K}_{\mathrm{a} 2}}} \\
& \mathrm{pH}=\frac{\mathrm{pK}_{\mathrm{a} 1}+\mathrm{pK}_{\mathrm{a} 2}}{2}
\end{aligned}
$$

SOLUBILITY PRODUCT:

$K_{s p}=(x s)^{x}(y s)^{y}=x^{x} \cdot y^{y} .(s)^{x+y}$

Redox Reaction and Electrochemistry

ELECTODE POTENTIAL

For any electrode \rightarrow oxidation potential(O.P.)=-Reduction potential(R.P.)
Ecell=R.P of cathode - R.P of anode
$\mathbf{E}_{\text {cell }}=$ R.P of cathode +O.P of anode
\mathbf{E}° cell is always a + ve quality \& Anode will be electrode of low R.P .

GIBBS FREE ENERGY CHANGE:

$\Delta \mathrm{G}=-\mathrm{nFE}$ cell
$\Delta \mathrm{G}^{\circ}=-\mathrm{nFE}^{\circ}{ }_{\text {cell }}$

NERNST EQUATION (Effect of concentration and temp of an emf of cell)

$\Rightarrow \Delta G=\Delta G^{\circ}+R T \ln Q \quad$ (Where Q is reaction quotient)
$\Delta \mathrm{G}^{\circ}=-\mathrm{RT} \ln \mathrm{K}_{\mathrm{eq}}$
$\mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{\circ}-\frac{\mathrm{RT}}{\mathrm{nF}} \ln \mathrm{Q}$
$\mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{\circ}-\frac{2.303 \mathrm{RT}}{\mathrm{nF}} \log \mathrm{Q}$
$\mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{\circ}-\frac{0.0591}{\mathrm{n}} \log \mathrm{Q}$ [At298K]
At chemical equation
$\Delta \mathrm{G}=0 ; \quad \mathrm{E}_{\text {cell }}=0$

- $\quad \log \mathrm{K}_{\text {eq }}=\frac{\mathrm{nE}_{\text {cell }}^{\circ}}{0.0591}$
$\mathrm{E}_{\text {cell }}^{\circ}=\frac{0.0591}{\mathrm{n}} \log \mathrm{K}_{\text {eq }}$
For an elecrode M(s)/ $\mathrm{M}^{\mathrm{n+}}$
$\mathrm{E}_{\mathrm{M}^{n+} / \mathrm{M}}=\mathrm{E}_{\mathrm{M}^{n+} / \mathrm{M}}^{\circ}-\frac{2.303 \mathrm{RT}}{\mathrm{nF}} \log \frac{1}{\left[\mathrm{M}^{\mathrm{n+}}\right]}$

CONCENTRATION CELL:

a. Electrolyte Concentration Cell:
eg. $\mathrm{Zn}(\mathrm{s}) / \mathrm{Zn}^{2+}\left(\mathrm{c}_{1}\right) \| \mathrm{Zn}^{2+}\left(\mathrm{c}_{2}\right) / \mathrm{Zn}(\mathrm{s})$
$\mathrm{E}=\frac{0.0591}{2} \log \frac{\mathrm{C}_{2}}{\mathrm{C}_{1}}$
b. Electrode Concentration Cell:

Eg. $\mathrm{Pt}, \mathrm{H}_{2}\left(\mathrm{P}_{1}\right.$ atm $) / \mathrm{H}^{+}(1 \mathrm{M}) / \mathrm{H}_{2}\left(\mathrm{P}_{2}\right.$ atm $) / \mathrm{Pt}$
$\mathrm{E}=\frac{0.0591}{2} \log \left(\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}\right)$

DIFFERENT TYPES OF ELECTRODES:

1. Metal-Metal ion Electrode $M(s) / \mathrm{M}^{\mathrm{n}+}$. $\mathrm{M}^{\mathrm{n}+}+\mathrm{ne}^{-} \rightarrow \mathrm{M}(\mathrm{s})$
$\mathrm{E}=\mathrm{E}^{\circ}+\frac{0.0591}{\mathrm{n}} \log \left[\mathrm{M}^{\mathrm{n}+}\right]$
2. Gas-ion Electrode $\mathrm{Pt} / \mathrm{H}_{2}(\mathrm{Patm}) / \mathrm{H}^{n+}(\mathrm{XM})$ as a reduction electode
$\mathrm{H}^{+}(\mathrm{aq})+\mathrm{e}^{-} \longrightarrow \frac{1}{2} \mathrm{H}_{2}$ (Patm)
$\mathrm{E}=\mathrm{E}^{\circ}-0.0591 \log \frac{\mathrm{P}_{\mathrm{H}}^{\frac{1}{2}}}{\left[\mathrm{H}^{+}\right]}$
3. Oxidation-reduction Electrode $\mathrm{Pt} / \mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}$

As a reduction electrode $\mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}$
$\mathrm{E}=\mathrm{E}^{\circ}-0.0591 \log \frac{\left[\mathrm{Fe}^{2+}\right]}{\left[\mathrm{Fe}^{3+}\right]}$
4. Metal-Metal insoluble salt Electrode eg. $\mathrm{Ag} / \mathrm{AgCl}, \mathrm{Cl}^{-}$
as a reduction electrode $\mathrm{AgCl}(\mathrm{s})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s})+\mathrm{Cl}-$
$\mathrm{Ecl}^{-} / \mathrm{AgCl} / \mathrm{Ag}=\mathrm{E}^{\circ} \mathrm{cl}^{-} / \mathrm{Agcl} / \mathrm{A}-0.0591 \log \left[\mathrm{Cl}^{-}\right]$

CALCULATION OF DIFFERENT THERMODYNAMICS FUNCTION OF CELL REACTION

- $\quad \Delta \mathrm{G}=-\mathrm{n} \mathrm{F} \mathrm{E}$ cell
- $S=-\left[\frac{\mathrm{dG}}{\mathrm{dT}}\right]_{\mathrm{p}} \quad$ (At constant pressure)
- $\Delta S=-\left[\frac{d(\Delta G)}{d T}\right]_{p}=n F\left(\frac{d}{d t}\left(E_{\text {cell }}\right)\right)_{p}$
- $\left[\frac{\partial \mathrm{E}}{\partial \mathrm{T}}\right]_{\mathrm{p}}=$ Temperature cofficient of e.m.f of the cell.

$$
\mathrm{E}=\mathrm{a}+\mathrm{bT}+\mathrm{cT}^{2}+\ldots .
$$

- $\Delta H=n F\left[T\left(\frac{\partial E}{\partial T}\right)_{p}-E\right]$
- $\quad \Delta \mathrm{Cp}$ of cell reaction

$$
\begin{aligned}
& \mathrm{Cp}=\frac{\mathrm{dH}}{\mathrm{dT}} \\
& \Delta \mathrm{Cp}=\frac{\mathrm{d}}{\mathrm{dT}}(\Delta \mathrm{H}) \\
& \Delta \mathrm{C}_{\mathrm{p}}=\mathrm{nFT} \frac{\mathrm{~d}^{2} \mathrm{E}_{\text {cell }}}{\mathrm{dT}^{2}}
\end{aligned}
$$

FARADAY'S LAW OF ELECTROLYSIS:

First Law:

$\mathrm{w}=\mathrm{zq} \quad \mathrm{w}=\mathrm{Z}$ it $\quad \mathrm{Z}=$ Electrochemical equivalent of substance
Second law:
$\mathrm{W} \alpha \mathrm{E} \quad \frac{\mathrm{W}}{\mathrm{E}}=$ Cons $\tan \mathrm{t}$
$\frac{\mathrm{W}_{1}}{\mathrm{E}_{1}}=\frac{\mathrm{W}_{2}}{\mathrm{E}_{2}}=$ \qquad
$\frac{\mathrm{W}}{\mathrm{E}}=\frac{\mathrm{i} \times \mathrm{t} \times \text { current efficiency factor }}{96500}$
CURRENT EFFICIENCY $=\frac{\text { actual mass deposited } / \text { produced }}{\text { Theoritical mass deposited } / \text { produced }} \times 100$

- CONDITION FOR SIMULTANEOUS DEPOSITION OF Cu \& Fe on cathode.
$\mathrm{E}_{\mathrm{cu}^{2+} / \mathrm{cu}}^{\circ}-\frac{0.0591}{2} \log \frac{1}{\mathrm{Cu}^{2+}}=\mathrm{E}_{\mathrm{Fe}^{2+} / \mathrm{Fe}}^{\circ}-\frac{0.0591}{2} \log \frac{1}{\mathrm{Fe}^{2+}}$
Condition for the simultaneous deposition of $\mathrm{Cu} \& \mathrm{Fe}$ on cathode.

CONDUCTANCE:

- Conductance $=\frac{1}{\text { Resistance }}$
- Specific conductors or conductivity
(Reciprocal of specific resistance) $\quad \kappa=\frac{1}{\rho}$
K=specific conductance
- Equivalent conductance:
$\lambda_{\mathrm{E}}=\frac{\kappa \times 1000}{\text { Normality }}$ unit:ohm ${ }^{-1} \mathrm{~cm}^{2} \mathrm{eq}^{-1}$
- Molar conductance:
$\lambda_{\mathrm{m}}=\frac{\kappa \times 1000}{\text { Molarity }}$ unit:-ohm ${ }^{-1} \mathrm{~cm}^{2}$ mole $^{-1}$

Specific conductance $=$ conductance $\times \frac{1}{a}$

KOHLRAUSCH'S LAW:

Variation of $\lambda_{\text {eq }} / \lambda_{\mathrm{M}}$ of a solution with concentration:
i. Strong electrolyte

$$
\lambda^{c}{ }_{M}=\lambda^{\infty}{ }_{M}-b \sqrt{c}
$$

ii. Weak electrolyte: $\lambda_{\infty}=n_{+} \lambda^{\infty}{ }_{+}+n_{-} \lambda^{\infty}{ }_{-}$where λ is the molar conductivity $\mathrm{n}_{+}=$No. of cations obtained after dissociation per formula unit
n = No. of anions obtained after dissociation per formula unit

APPLICATION OF KOHLRAUSCH LAW:

1. Calculation of $\lambda^{0}{ }_{\mathrm{m}}$ of weak electrolytes:
$\lambda^{0}{ }_{\mathrm{M}(\mathrm{CH} 3 \mathrm{COOH})}=\lambda^{0}{ }_{\mathrm{M}(\mathrm{CH} 3 \mathrm{COONa})}+\lambda^{0}{ }_{\mathrm{M}(\mathrm{HCl})}-\lambda^{0}{ }_{\mathrm{M}(\mathrm{NaCl})}$
2. To calculate degree of dissociation of a weak electrolyte

$$
\alpha=\frac{\lambda_{\mathrm{m}}^{\mathrm{c}}}{\lambda_{\mathrm{m}}^{0}} \quad ; \quad \mathrm{K}_{\mathrm{eq}}=\frac{\mathrm{c} \alpha^{2}}{(1-\alpha)}
$$

3. Solubility (\mathbf{S}) of sparingly soluble salt \& their $K_{\text {sp }}$
$\lambda_{\mathrm{M}}^{\mathrm{c}}=\lambda_{\mathrm{M}}{ }^{\infty}=\kappa \times \frac{1000}{\text { Solubility }}$
$\mathrm{K}_{\mathrm{sp}}=\mathrm{S}^{2}$

Absolute ionic mobility:

$\lambda^{0}{ }_{c} \propto \mu_{\mathrm{c}} \quad ; \quad \lambda{ }^{0} \propto \mu_{\mathrm{a}}$
$\lambda^{0}{ }_{c}=\mathrm{F} \mu_{\mathrm{c}}{ }^{0} \quad ; \quad \lambda^{0}{ }_{\mathrm{c}}=\mathrm{F} \times \mu_{\mathrm{c}}{ }^{0}$
Ionic Mobility $\mu=\frac{\mathrm{v} \rightarrow \text { Speed }}{(\mathrm{v} / \ell) \rightarrow \text { Potential gradient }}$

Transport Number:

$\mathrm{t}_{\mathrm{c}}=\left[\frac{\mu_{\mathrm{c}}}{\mu_{\mathrm{c}}+\mu_{\mathrm{a}}}\right]$,

$$
\mathrm{t}_{\mathrm{a}}=\left[\frac{\mu_{\mathrm{a}}}{\mu_{\mathrm{a}}+\mu_{\mathrm{c}}}\right]
$$

Where $t_{c}=$ Transport Number of cation \& $t_{a}=$ Transport Number of anion

Chemical Kinetics

CHEMICAL KINETICS \& REDIOACTIVITY

RATE/VELOCITY OF CHEMICAL REACTION:

Rate $=\frac{\Delta \mathrm{c}}{\Delta \mathrm{t}}=\frac{\mathrm{mol} / \mathrm{lit}}{\mathrm{sec}}=\mathrm{mol} \mathrm{lit}^{-1} \mathrm{time}^{-1}=\mathrm{moldm}^{-3} \mathrm{time}^{-1}$
Types of Rates of chemical reaction:
For a reaction $R \rightarrow P$
Average rate $=\frac{\text { Total change in concentration }}{\text { Total time taken }}$

$\mathrm{R}_{\text {instantaneous }}=\lim _{\mathrm{t} \rightarrow 0}\left[\frac{\Delta \mathrm{c}}{\Delta \mathrm{t}}\right]=\frac{\mathrm{dc}}{\mathrm{dt}}=-\frac{\mathrm{d}[\mathrm{R}]}{\mathrm{dt}}=\frac{\mathrm{d}[\mathrm{P}]}{\mathrm{dt}}$

RATE LAW (DEPENDENCEOFRATEONCONCENTRATIONOFREACTANTS):

Rate $=$ K (conc.) order - differential rate equation or rate expression
Where $\mathrm{K}=$ Rate constant = specific reaction rate $=$ rate of reaction when concentration is unity unit of $K=(\text { conc })^{1-\text { order }}$ time ${ }^{-1}$

Order of reaction:

$\mathrm{m}_{1} \mathrm{~A}+\mathrm{m}_{2} \mathrm{~B} \longrightarrow$ products.
$R \propto[A]^{p}[B]^{q}$ Where p may or may not be equal to $m 1 \&$ similarly q may or may not be equal to m2.
p is order of reaction with respect to reactant A and q is order of reaction with respect to reactant B and $(p+q)$ is overall order of the reaction.

INTEGRATED RATE LAWS:

C_{0} or 'a' is initial concentration and C_{t} or $\mathrm{a}-\mathrm{x}$ is concentration at time' t '
a. zero order reactions:

Rate $=\mathrm{k}$ [conc.] ${ }^{\circ}=$ constant
Rate $=k=\frac{C_{0}-C_{t}}{' t^{\prime}} \quad$ or $C_{t}=C_{0}-k t$

Unit of $\mathrm{K}=\mathrm{mol} \mathrm{lit}^{-1} \mathrm{sec}^{-1}$, Time for completion $=\frac{\mathrm{C}_{0}}{\mathrm{k}}$
At $\mathrm{t}_{1 / 2}, \mathrm{C}_{\mathrm{t}}=\frac{\mathrm{C}_{0}}{2}$, so $\mathrm{kt}_{1 / 2}=\frac{\mathrm{C}_{0}}{2} \Rightarrow \mathrm{t}_{1 / 2}=\frac{\mathrm{C}_{0}}{2 \mathrm{k}} \therefore \mathrm{t}_{1 / 2} \alpha \mathrm{C}_{0}$

b. First Order Reactions:

i. Let a 1st order reaction is, $\mathrm{A} \longrightarrow$ Products
$\mathrm{t}=\frac{2.303}{\mathrm{k}} \log \frac{\mathrm{a}}{\mathrm{a}-\mathrm{x}}$ or $\mathrm{k}=\frac{2.303}{\mathrm{t}} \log \frac{\mathrm{C}_{0}}{\mathrm{C}_{\mathrm{t}}}$
$\Rightarrow \mathrm{t}_{1 / 2}=\frac{\ln 2}{\mathrm{k}}=\frac{0.693}{\mathrm{k}}=$ Independant of initial concentration
$\mathrm{t}_{\text {avg }}=\frac{1}{\mathrm{k}}=1.44 \mathrm{t}_{1 / 2}$

Graphical Representation:

$\mathrm{t}=-\frac{2.303}{\mathrm{k}} \log \mathrm{C}_{\mathrm{t}}+\frac{2.303}{\mathrm{R}} \log \mathrm{C}_{0}$

$\log C_{0} / C_{i}$
or $\log \mathrm{a} / \mathrm{a}-\mathrm{x}$

c. Second order reaction:

2nd order Reactions Two types

$\mathrm{A}+\mathrm{A} \rightarrow$ Products $\mathrm{A}+\mathrm{B} \rightarrow$ Products.
$\begin{array}{lll}\text { a } a & a & b\end{array}$
($a-x)(a-x) \quad a-x b-x$
$\therefore \frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{k}(\mathrm{a}-\mathrm{x})^{2} \quad \frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{k}(\mathrm{a}-\mathrm{x})(\mathrm{b}-\mathrm{x})$
$\Rightarrow \frac{1}{(a-x)}-\frac{1}{a}=k t \quad k=\frac{2.303}{t(a-b)} \log \frac{b(a-x)}{a(b-x)}$

d. Psuedo first order reaction:

\therefore For $\mathrm{A}+\mathrm{B} \longrightarrow$ Products $\quad\left[\right.$ Rate $\left.=\mathrm{K}[\mathrm{A}]^{1}[\mathrm{~B}]^{1}\right]$
$\mathrm{k}=\frac{2.303}{\mathrm{t}(\mathrm{a}-\mathrm{b})} \log \frac{\mathrm{b}(\mathrm{a}-\mathrm{x})}{\mathrm{a}(\mathrm{b}-\mathrm{x})}$
Now if ' B ' is taken in large excess $\mathrm{b} \gg \mathrm{a}$.
$\Rightarrow \mathrm{k}=\frac{2.303}{\mathrm{bt}} \log \frac{\mathrm{a}}{\mathrm{a}-\mathrm{x}}$
\because ' b ' is very large can be taken as constant
$\Rightarrow \mathrm{kb}=\frac{2.303}{\mathrm{bt}} \log \frac{\mathrm{a}}{\mathrm{a}-\mathrm{x}}$
$\Rightarrow \mathrm{k}^{\prime}=\frac{2.303}{\mathrm{t}} \log \frac{\mathrm{a}}{\mathrm{a}-\mathrm{x}}$, kis psuedo first order rate constan t

METHODS TO DETERMINE ORDER OF A REACTION

a. Initial rate method:
$\mathrm{r}=\mathrm{k}[\mathrm{A}]^{\mathrm{a}}[\mathrm{B}]^{\mathrm{b}}[\mathrm{C}]^{\mathrm{c}}$ if
[B] = constant
[C] = constant
then for two different initial concentrations of A we have
$\mathrm{r}_{01}=\mathrm{k}\left[\mathrm{A}_{0}\right]_{1}{ }^{\mathrm{a}}, \quad \mathrm{r}_{0}{ }^{2}=\mathrm{k}\left[\mathrm{A}_{0}\right] 2^{\mathrm{a}}$
$\Rightarrow \frac{\mathrm{r}_{0_{1}}}{\mathrm{r}_{0_{2}}}=\left(\frac{\left[\mathrm{A}_{0}\right]_{1}}{\left[\mathrm{~A}_{0}\right]_{2}}\right)^{\mathrm{a}}$
b. Using integrated rate law: It is method of trial and error.
c. Method of half lives:
forn ${ }^{\text {th }}$ order reaction $t_{1 / 2} \alpha \frac{1}{\left[R_{0}\right]^{n-1}}$
d. Ostwald Isolation Method :
rate $=k[A]^{a}[B]^{b}[C]^{c}=k_{0}[A]^{a}$

MEHODS TO MONITOR THE PROGRESS OF THE REACTION:

a. Progress of gaseous reaction can be monitored by measuring total pressure at a fixed volume \& temperature or by measuring total volume of mixture under constant pressure and temperature.
$k=\frac{2.303}{t} \log \frac{P_{0}(n-1)}{n P_{0}-P_{t}}\{$ Formula is not applicable when $n=1$, the value of n can be fraction also.\}
b. By titration method:

1. $\therefore \mathrm{a} \propto \mathrm{V}_{0} \mathrm{a}-\mathrm{x} \propto \mathrm{Vt} \Rightarrow \quad \mathrm{k}=\frac{2.303}{\mathrm{t}} \log \frac{\mathrm{V}_{0}}{\mathrm{~V}_{\mathrm{t}}}$
2. Study of acid hydrolysis of an easter.
$\mathrm{k}=\frac{2.303}{\mathrm{t}} \log \frac{\mathrm{V}_{\infty}-\mathrm{V}_{0}}{\mathrm{~V}_{\infty}-\mathrm{V}_{\mathrm{t}}}$
3. By measuring optical rotation produced by the reaction mixture:
$\mathrm{k}=\frac{2.303}{\mathrm{t}} \log \frac{\theta_{0}-\theta_{\infty}}{\theta_{\mathrm{t}}-\theta_{\infty}}$
EFFECT OF TEMPERATUREON RATEOF REACTION.
T.C $=\frac{\mathrm{K}_{\mathrm{t}}+10}{\mathrm{~K}_{\mathrm{t}}} \approx 2$ to 3 (for most of the reactions)

SHr=Summation of enthalpies of reactants
$\mathrm{SHp}=$ Summation of enthalpies of reactants
DH = Enthalpy change during the reaction
Ea $1=$ Energy of activation of the forward reaction
$\mathrm{Ea}_{2}=$ Energy of activation of the backward reaction
$\mathrm{Ep}_{\mathrm{p}}>\mathrm{Er}_{\mathrm{r}} \rightarrow$ endothermic
$\mathrm{E}_{\mathrm{p}}<\mathrm{E}_{\mathrm{r}} \rightarrow$ exothermic
$\Delta H=\left(E_{p}-E_{r}\right)=$ enthalpy change
$\Delta H=E_{a f}-E_{a b}$
$\mathrm{E}_{\text {threshold }}=\mathrm{Eaf}_{\mathrm{af}}+\mathrm{E}_{\mathrm{r}}=\mathrm{E}_{\mathrm{b}}+\mathrm{E}_{\mathrm{p}}$

Arhenius equation

$$
\begin{array}{lr}
\mathrm{k}=\mathrm{Ae}^{-\mathrm{E}_{\mathrm{a}} \mathrm{RT}} & \mathrm{r}=\mathrm{k} \text { [conc.] order } \\
\frac{\mathrm{d} \ln \mathrm{k}}{\mathrm{dT}}=\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{RT}^{2}} & \log \mathrm{k}=\left(-\frac{\mathrm{Ea}}{2.303 \mathrm{R}}\right) \frac{1}{\mathrm{~T}}+\log \mathrm{A}
\end{array}
$$

If k_{1} and k_{2} be the rate constant of a reaction at two different temperature T 1 and T 2 respectively, then we have

$$
\begin{aligned}
& \log \frac{\mathrm{k}_{2}}{\mathrm{k}_{1}}=\frac{\mathrm{E}_{\mathrm{a}}}{2 \cdot 303 \mathrm{R}} \cdot\left(\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right) \\
& \& \quad \operatorname{Ink}=\ln \mathrm{A}-\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{RT}} \\
& \& \quad \mathrm{~T} \rightarrow \infty, \mathrm{k} \rightarrow \mathrm{~A}
\end{aligned}
$$

$$
\operatorname{InK} \underbrace{\text { slope }=-\frac{E_{a}}{R}}_{1 / \mathrm{T}} \quad E_{a} \geq
$$

REVERSIBLE REACTIONS

$\mathrm{K}_{\mathrm{f}}=\mathrm{Afe}^{-\mathrm{Eaf} / \mathrm{RT}}$

$$
K_{b}=\mathrm{A}_{\mathrm{b}} \mathrm{e}^{-\mathrm{Eab} / \mathrm{RT}}
$$

$\mathrm{K}_{\text {eq }}=\frac{\mathrm{K}_{\mathrm{f}}}{\mathrm{K}_{\mathrm{b}}}=\left(\frac{\mathrm{A}_{\mathrm{f}}}{\mathrm{A}_{\mathrm{b}}}\right) \mathrm{e}^{-\left(\mathrm{E}_{\mathrm{at}}-\mathrm{E}_{\mathrm{ab}}\right) / R \mathrm{RT}}$
In $\quad K_{\text {eq }}=-\frac{\Delta H}{R T}+\operatorname{In}\left(\frac{A_{f}}{A_{b}}\right)$

$\frac{[\mathrm{B}]}{[\mathrm{C}]}=\frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}} \quad \Rightarrow \quad \mathrm{E}_{\mathrm{a}}=\frac{\mathrm{E}_{\mathrm{a}_{1}} \mathrm{k}_{1}+\mathrm{E}_{\mathrm{E}_{2}} \mathrm{k}_{2}}{\mathrm{k}_{1}+\mathrm{k}_{2}}$
ii. REVERSIBLE 1 ${ }^{\text {ST }}$ ORDER REACATION (both forward and backward)

$$
\mathrm{x}=\frac{\mathrm{K}_{\mathrm{f}} \mathrm{a}}{\mathrm{~K}_{\mathrm{f}}+\mathrm{k}_{\mathrm{b}}}\left(1-\mathrm{e}^{-\left(\mathrm{k}_{\mathrm{f}}+\mathrm{k}_{\mathrm{b}}\right) \mathrm{t}}\right)
$$

$$
\mathrm{k}_{\mathrm{f}}+\mathrm{k}_{\mathrm{b}}=\frac{1}{\mathrm{t}} \operatorname{In}\left(\frac{\mathrm{x}_{\text {eq. }}}{\mathrm{x}_{\text {eq. }}-\mathrm{x}}\right)
$$

iii. SEQUENTIAL 1 ${ }^{\text {ST }}$ ORDERREACTION
$[\mathrm{A}]=[\mathrm{A}] \mathrm{e}^{-\mathrm{k}_{1} \mathrm{t}}$
$\mathrm{X}=\mathrm{a}\left(1-\mathrm{e}^{-\mathrm{k}_{1} \mathrm{t}}\right)$

$$
\mathrm{y}=\frac{\mathrm{K}_{1} \mathrm{a}}{\mathrm{~K}_{2}-\mathrm{K}_{1}}\left\{\mathrm{e}^{-\mathrm{k}_{1} \mathrm{t}}-\mathrm{e}^{-\mathrm{k}_{2} \mathrm{t}}\right\}
$$

$$
\mathrm{T}_{\mathrm{B}(\max)}=\frac{1}{\left(\mathrm{~K}_{1}-\mathrm{K}_{2}\right)} \operatorname{In} \frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}}
$$

CASE-I
$K_{1} \gg K_{2}$

CASE II : $K_{2} \gg K_{1}$

