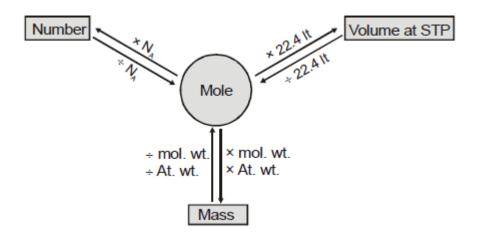
Basic Concept in Chemistry

STOICHIOMETRY

Relative atomic mass(R.A.M) = $\frac{\text{Mass of one atom of an element}}{\frac{1}{12} \times \text{mass of one carbon atom}}$ = Total Number of nucleons

☞<u>Y-map</u>



Density:

Specific gravity = $\frac{\text{density of the substance}}{\text{density of water}}$

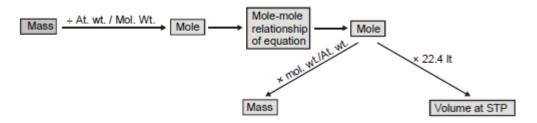
For gases:

Absolute density mass/volume $=\frac{Molar mass of the gas}{Molar volume of the gas} \Rightarrow \rho = \frac{PM}{RT}$

Vapour density V.D =
$$\frac{d_{gas}}{d_{H_2}} = \frac{PM_{gas/RT}}{PM_{H_2/RT}} = \frac{M_{gas}}{M_{H_2}} = \frac{M_{gas}}{2}$$

M_{gas}=2 V.D.

Mole-mole analysis:



Concentration terms:

Molarity (M):

$$:: Molarity(M) = \frac{w \times 1000}{(Mol.wt of solute) \times V_{inml}}$$

Molality (m):

 $Molality = \frac{number of moles of solute}{mass of solvent in gram} \times 1000 = 1000 w_1 / M_1 w_2$

Mole fraction (x):

∴ Mole fraction of solution(X₁) =
$$\frac{n}{n+N}$$

∴ Mole fraction of solvent(X₂) = $\frac{N}{n+N}$

 $X_1 + X_2 = 1$

% Calculation:

(i) % w / w =
$$\frac{\text{mass of solute in gm}}{\text{mass of solution in gm}} \times 100$$

(ii) % w / v = $\frac{\text{mass of solute in gm}}{\text{mass of solution in ml}} \times 100$
(iii) % v / v = $\frac{\text{Volume of solution in ml}}{\text{Volume of solution}} \times 100$

Average/Mean atomic mass:

 $A_{x} = \frac{a_{1}x_{1} + a_{2}x_{2} + \dots + a_{n}x_{n}}{100}$

Mean molar mass or molecular mass:

$$M_{avg} = \frac{n_1 M_1 + n_2 M_2 + ... + n_n x_n}{n_1 + n_2 + ... n_n} \quad \text{Or} \quad M_{avg} = \frac{\sum_{j=1}^{j=n} n_j M_j}{\sum_{i=1}^{j=n} n_j}$$

Calculation of individual oxidation number:

Formula: Oxidation Number=Number of electrons in the valence shell-number of electrons left after bonding

Concept of Equivalent weight/Mass: For elements, equivalent weight (E) = $\frac{\text{Atomic Weight}}{\text{Valency-factor}}$ For acid/base, $E = \frac{M}{\text{Basicity / Acidity}}$ Where M=Molar mass For Oxidation \ Reduction, $E = \frac{M}{\text{no.of moles of e gained / lost}}$ Equivalent weight (E) = $\frac{\text{Atomic or molecular weight}}{\text{v.f.}}$ (v. f. = valency factor) Concept of number of equivalents: No.of equivalents of solute = $\frac{Wt}{Eq.wt} = \frac{W}{E} = \frac{W}{M/n}$

No. of equivalents of solute=No. of moles of solute × v.f **Normality (N)**:

 $\left< \text{Normality}(N) = \frac{\text{Number of equivalents of solute}}{\text{Volume of solution(in litres)}} \right>$

Normality=Molarity \times v.f

Calculation of valency Factor:

n-factor of acid = basicity = no. of H⁺ ion(s) furnished per molecule of the acid. n-factor of base = acidity = no. of OH⁻. ion(s) furnished by the base per molecule.

At equivalence point:

 $N_1V_1 = N_2V_2$ $n_1M_1V_1 = n_2M_2V_2$

Volume strength of H₂O₂:

20V H₂O₂ means **one litre** of this sample of H₂O₂ on decomposition gives **20 lt. of O₂** gas at **S.T.P.** Normality of H₂O₂(N) $\frac{\text{Volume, strength of H}_2O_2}{\Gamma \epsilon}$

Molarity of $H_2O_2(M) = \frac{5.6}{11.2}$ Molarity of $H_2O_2(M) = \frac{Volume strength of H_2O_2}{11.2}$

Measurement of Hardness:

Hardness in ppm = $\frac{\text{mass of CaCO}_3}{\text{Total mass of water}} \times 10^6$

Calculation of available chlorine from a sample of bleaching powder:

% of $Cl_2 = \frac{3.55 \times x \times V(mL)}{W(g)}$ Where x= molarity of hypo solution and v=mL. of hypo solution used in

titration.

States of Matter

GASEOUS STATE

Temperature Scale:

 $\frac{C-0}{100-0} = \frac{K-273}{373-273} = \frac{F-32}{212-32}$

Boyle's law and measurement of pressure:

At constant temperature, $V \propto \frac{1}{p}$ $P_1V_1=P_2V_2$

Charles law:

At constant pressure, $V \propto T$

Or
$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

Gay-Lussac's law:

At constant volume, Pα T

 $\frac{P_1}{T_1} = \frac{P_2}{T_2} \rightarrow \text{Temp on absolute scale}$

Ideal gas Equation:

PV=nRT $PV = \frac{wRT}{m} \quad OR \ P = \frac{dRT}{m} \quad OR \ Pm = dRT$

Dalton's law of partial pressure:

 $P_1 = \frac{n_1 RT}{V}$, $P_2 = \frac{n_2 RT}{V}$, $P_3 = \frac{n_3 RT}{V}$ and so on.

Total pressure= $P_1+P_2+P_3+...$ Partial pressure=mole fraction × Total Pressure.

Amagat's law of partial volume:

 $V = V_1 + V_2 + V_3 + \dots$

Average molecular mass of gaseous mixture:

 $M_{mix=} \frac{\text{Total mass of mixture}}{\text{Total no.of moles in mixture}} = \frac{n_1 M_1 + n_2 M_2 + n_3 M_3}{n_1 + n_2 + n_3}$

Graham's Law:

Rate of diffusion $r \propto \frac{1}{\sqrt{d}}$; d=density of gas $\frac{r_1}{r_2} = \frac{\sqrt{d_2}}{\sqrt{d_1}} = \frac{\sqrt{M_2}}{\sqrt{M_1}} = \sqrt{\frac{V.D_2}{V.D_1}}$

Kinetic Theory of Gases

 $PV = \frac{1}{3}mN\overline{U^2}$ Kinetic equation of gases

Average K.E. for one mole= $N_A \left(\frac{1}{2}m\overline{U^2}\right) = \frac{3}{2}KN_AT = \frac{3}{2}RT$

- Root mean square speed $U_{\rm rms} = \sqrt{\frac{3RT}{M}}$ molar mass must be in kg/mole.
 - Average speed $U_{avg}=U_1+U_2+U_3+...,U_N$ $U_{avg}=\sqrt{\frac{8RT}{\pi M}}=\sqrt{\frac{8kT}{\pi m}}$ k is Boltzmann constant
- Most Probable speed

•

$$U_{\rm MPS} = \sqrt{\frac{2RT}{M}} = \sqrt{\frac{2kT}{m}}$$

van der Waal's equation

$$\left(P+\frac{an^2}{v^2}\right)(v-nb)=nRT$$

a and b are van der Waal's constants

Critical Constants:

 $\label{eq:critical volume, V_c=3b} Critical volume, V_c=3b \qquad at \ P_c \ and \ V_c$

Critical pressure, $P_c = \frac{a}{27b^2}$ Critical temperature, $T_c = \frac{8a}{27Rb}$

Vander wall equation in virial form:

$$Z = \left(1 + \frac{b}{V_m} + \frac{b^2}{V_m^2} + \frac{b^3}{V_m^3} + \dots\right) - \frac{a}{V_m RT} = 1 + \frac{1}{V_m} \left(b - \frac{a}{RT}\right) + \frac{b^2}{V_m^2} + \frac{b^3}{V_m^3} + \dots$$

Reduced Equation of state:

$$\left(P_{r}+\frac{3}{V_{r}^{2}}\right)(3V_{r}-1)=8T_{r}$$

Atomic Structure

Estimation of closest distance of approach (derivation) of α -particles:

$$R = \frac{4KZe^2}{m_{\alpha}V_{\alpha}^2}$$
 (k=9×10⁹ Nm²C⁻²)

The radius of a nucleus:

 $R = R_0(A)^{1/3} cm (R_{0}=1.097 \times 10^5 cm^{-1})$

Planck's Quantum Theory:

Energy of one proton= $hv = \frac{hc}{\lambda}$ (h=6.62×10⁻³⁴ Joule-second)

Photoelectric Effect:

 $hv = hv_0 + \frac{1}{2}m_ev^2$

Bohr's Model for Hydrogen like atoms:

1.
$$\operatorname{mvr} = n \frac{h}{2\pi}$$
 (Quantization of angular momentum)
2. $E_n = -\frac{E_1}{n^2} z^2 = 2.178 \times 10^{-18} \frac{z^2}{n^2} J / \operatorname{atom} = 13.6 \frac{z^2}{n^2} eV$
3. $r_n = \frac{n^2}{Z} \times \frac{h^2}{4\pi^2 e^2 m} = \frac{0.529 \times n^2}{Z} \mathring{A}$

4.
$$v = \frac{2\pi z e^2}{nh} = \frac{2.18 \times 10^6 \times z}{n} m/s$$

De-Broglie Wavelength:

$$\lambda = \frac{h}{mc} = \frac{h}{p} (\text{for photon})$$

Wavelength of emitted photon:

$$\frac{1}{\lambda} = \bar{v} = RZ^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$
 (R=1.0973×10⁷ m⁻¹)

No.of photons emitted by a sample of H atom:

 $\frac{\Delta n \left(\Delta n + 1 \right)}{2}$

Heisenberg's uncertainty principle:

$$\Delta x.\Delta p > \frac{h}{4\pi} \qquad \text{Or} \quad m \, \Delta x.\Delta v \ge \frac{h}{4\pi} \qquad \text{Or} \quad \Delta x.\Delta v \ge \frac{h}{4\pi m}$$

Quantum Numbers:

- * Principal quantum number(n)=1,2,3,4....to ∞
- * Orbital angular momentum number of electron in any orbit $=\frac{nh}{2\pi}$
- * Azimuthal Quantum number $(\ell) = 0, 1, \dots$ to (n-1).
- * Number of orbitals in a subshell= $2\ell + 1$
- * Maximum number of electrons in particular subshell= $2 \times (2\ell + 1)$
- * Orbital angular momentum L= $\frac{h}{2\pi}\sqrt{\ell(\ell+1)} = \hbar\sqrt{\ell(\ell+1)}\left[\hbar = \frac{h}{2\pi}\right]$

Chemical Thermodynamic

IUPAC Sign convention about Heat and Work:

Work done by the system = Positive Work done on the system = Negative

1st Law of Thermodynamics

 $\Delta U=(U_2-U_1)=q+w$

Law of equipartition of energy:

$$U = \frac{f}{2} nRT$$
 (only for ideal gas)

$$\Delta E = \frac{f}{2} nR(\Delta T)$$

Where f= degrees of freedom for that gas.

- F=3 for monoatomic
- =5 for diatomic or linear polyatomic
- =6 for non-linear polyatomic

Calculation of heat (q):

Total heat capacity:

$$C_{T} = \frac{\Delta q}{\Delta T} = \frac{dq}{dT} = J / °C$$

Molar heat capacity:

$$C = \frac{\Delta q}{n\Delta T} = \frac{dq}{ndT} = \text{Jmole}^{-1} \text{ K}^{-1}$$
$$C_{p} \frac{\gamma R}{\gamma - 1} \qquad \qquad C_{v} = \frac{R}{\gamma - 1}$$

Specific heat capacity (s):

$$S = \frac{\Delta q}{m\Delta T} = \frac{dq}{ndT} = Jgm^{-1} K^{-1}$$

WORK DONE (w):

Isothermal Reversible expansion/compression of an ideal gas:

W=-nRT $ln\left(\frac{V_f}{V_i}\right)$

Reversible and irreversible isochoric processes.

Since dV=0

So $dW=-P_{ext}$. dV=0.

Reversible isobaric processes:

 $W=P(V_f-V_i)$

Adiabatic reversible expansion:

 \Rightarrow T₂V₂ γ -1 =T₁V₁ γ -1

Reversible Work:

 $W = \frac{P_2 V_2 - P_1 V_1}{\gamma - 1} = \frac{nR(T_2 - T_1)}{\gamma - 1}$

Irreversible Work:

$$W = \frac{P_2 V_2 - P_1 V_1}{\gamma - 1} = \frac{nR(T_2 - T_1)}{\gamma - 1} nC_v (T_2 - T_1) = -P_{ext} (V_2 - V_1)$$

And use $\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$

Free expansion–Always going to be irreversible and since $P_{ext} = 0$

So dW=-Pext.dV=0

If no. heat is supplied q=0

Then $\Delta E=0$ SO $\Delta T=0$.

Application of Ist Law:

 $\Delta U {=} \Delta Q {+} \Delta W {\Rightarrow} \Delta W {=} {-} P \Delta V$

 $\therefore \Delta U = \Delta Q - P \Delta V$

Constant volume process:

Heat given at constant volume = change in internal energy

 $du = (dq)_v$

 $du = nC_v dT$

 $C_v = \frac{1}{n} \cdot \frac{du}{dT} = \frac{f}{2} R$

Constant pressure process:

H= Enthalpy (state function and extensive property)

H = U + PV

 $\Rightarrow C_P - C_v = R$ (Only for ideal gas)

Second Law of Thermodynamics:

 $\Delta S_{universe} = \Delta S_{system} + \Delta S_{surrounding} > 0$ for a spontaneous process.

Entropy(S):

$$\Delta S_{system} = \int_{A}^{B} \frac{dq_{rev}}{T}$$

Entropy calculation for an ideal gas undergoing a process:

 $\Delta S_{system} = nc_v In \frac{T_2}{T_1} + nR In \frac{V_2}{V_1} \quad (Only \text{ for an ideal gas})$

Gibb's free energy (G): (State function and an extensive property)

 $G_{system} = H_{system} - TS_{system}$

Criteria of spontaneity:

- (i) If ΔG_{system} is (-ve) < 0 \Rightarrow process is spontaneous
- (ii) If ΔG_{system} is (+) > 0 \Rightarrow process is non spontaneous
- (iii) If $\Delta G_{system} = 0 \Rightarrow$ system is at equilibrium.

Physical interpretation of ΔG :

The maximum amount of non-expansional (compression) work which can be performed. $\Delta G = dw_{non-exp} = dH - TdS.$

Standard Free Energy Change (∆G°):

- 1. $\Delta G^{\circ} = -2.303 \text{ RT} \log_{10} K_{eq}$ $K_{eq} = equilibrium constant$
- 2. At equilibrium $\Delta G=0$
- 3. The decrease in free energy $(-\Delta G)$ is given as:

$$-\Delta G = W_{net} = 2.303 \, nRT \log_{10} \frac{V_2}{V_1}$$

4. ΔG_{f}° for elemental state = 0

5.
$$\Delta G_{f}^{\circ} = G_{Pr \text{ oducts}}^{\circ} - G_{Re \text{ ac tan ts}}^{\circ}$$

Thermochemistry:

Change in standard enthalpy

$$\Delta H^{\circ} = H^{\circ}_{m,2} - H^{\circ}_{m,1}$$

=heat added at constant pressure

 $=C_p\Delta T$

If $H_{products} {>} H_{reactants}$

 \rightarrow Reaction will be endothermic as we have to supply extra heat to reactants to convert it into products

If $H_{products}$ < $H_{reactants}$

 \rightarrow Reaction will be exothermic as extra heat content of reactants will be released during the reaction. Enthalpy change of a reaction:

 $\Delta H^{\circ}_{reactions} = H^{\circ}_{products} - H^{\circ}_{reactants}$

 $\texttt{=} \mathsf{Positive} \rightarrow \mathsf{endothermic}$

=negative \rightarrow exothermic

Temperature Dependence of ΔH : (Kirchoff's equation)

For a constant volume reaction

 $\Delta H_2^{\circ} = \Delta H_1^{\circ} + \Delta C_P (T_2 - T_1)$

Where $\Delta C_p = C_{p(Products)} - C_{p(reactants)}$

For $\Delta C_p = C_{p(Products)} - C_{p(reactants)}$

For a constant volume reaction

$$\Delta E_2^{\circ} = \Delta E_1^{\circ} + \int \Delta C_v dT$$

Enthalpy of Reaction from Enthalpies of Formation:

The enthalpy of reaction can be calculated by

$$\Delta H_{r}^{\circ} = \sum \nu_{B} \Delta H_{f,products}^{\circ} - \sum \nu_{B} \Delta H_{f,reactants}^{\circ}$$

 V_B is the stoichiometric coefficient.

Estimation of Enthalpy of a reaction from bond Enthalpies:

 $\Delta H = \begin{pmatrix} \text{Enthalpy required} \\ \text{to break reactants in} \\ \text{to gasesous atoms} \end{pmatrix} - \begin{pmatrix} \text{Enthalpy released to} \\ \text{form products from the} \\ \text{gasesous atoms} \end{pmatrix}$

Resonance Energy:

 $\Delta H^{o}_{\rm resonance} = \Delta H^{o}_{\rm f, \, experimental}. \, \Delta H^{o}_{\rm f, \, calclulated}$

 $=\Delta H^{\circ}_{c, calculated}$ -. $\Delta H^{\circ}_{c, experimental}$

Classification of Crystal into Seven System

Crystal System	Unit cell Dimensions and angles	Bravais Example	Lattices
Cubic	$a = b = c$; $\alpha = \beta = \gamma = 90^{\circ}$	SC, BCC, FCC	NaCl
Orthorhombic	$a \neq b \neq c$; $\alpha = \beta = \gamma = 90^{\circ}$	SC, BCC, end	S _R (Rhombic
		centred & FCC	Sulfur)
Tetragonal	$a = b \neq c$; $\alpha = \beta = \gamma = 90^{\circ}$	SC, BCC	Sn,ZnO2
Monoclinic	$a \neq b \neq c$; $\alpha = \gamma = 90^{\circ} \neq \beta$	SC, end centred	Sм(Monoclinic
			Sulfur)
Rhombohedral	$a = b = c$; $\alpha = \beta = \gamma = 90^{\circ}$	SC	Quartz
Triclinic	$a \neq b \neq c$; $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$	SC	H ₃ BO ₃
Hexagonal	a = b \neq c ; α = β = 90°; γ =	SC	Graphite
	120°		

• ANALYSIS OF CUBICAL SYSTEM

i.	Property atomic radius (r) a = edge length	SC <u>a</u> 2	$\frac{\mathbf{BCC}}{\frac{\sqrt{3}a}{4}}$	$\frac{a}{2\sqrt{2}}$
ii.	No. of atoms per unit cell (Z)	1	2	4
iii.	C.No.	6	8	12
iv.	Packing efficiency	52%	68%	74%
v.	No. of voids			
	(a) octahedral (Z)	-	-	4
	(b) Tetrahderal (2Z)	-	-	8

• NEIGHBOUR HOOD OF APARTICLE :

I. Simple Cubic (SC) Structure:

Type of neighbour	Distance	no.of neighbours
nearest	а	6 (shared by 4 cubes)
(next) ¹	a√2	12 (shared by 2 cubes)
$(next)^2$	a√3	8 (unshared)

II. Body Centered Cubic (BCC) Structure:

Type of neighbour	Distance	no.of neighbours
nearest	$2r = a \frac{\sqrt{3}}{2}$	8
(next) ¹	=а	6
(next) ¹ (next) ²	$=a\sqrt{2}$	12
(next) ³	$=a\frac{\sqrt{3}}{2}$	24
(next) ⁴	$=a\sqrt{3}$	8

III. Face Centered Cubic (FCC) Structure :

Type of neighbor	Distance	no. of neighbors
nearest	$\frac{a}{\sqrt{2}}$	$12 = \left(\frac{3 \times 8}{2}\right)$
(next) ¹	a	$6 = \left(\frac{3 \times 8}{4}\right)$
(next) ²	$a\sqrt{\frac{3}{\sqrt{2}}}$	24
(next) ³	$a\sqrt{\frac{3}{\sqrt{2}}}$ $a\sqrt{2}$	12
(next) ⁴	$a\sqrt{\frac{5}{\sqrt{2}}}$	24

• DENSITY OF LATTICE MATTER (d) = $\frac{Z}{N_{A}} \left(\frac{M}{a^{3}} \right)$

where N_A = Avogadro's No. M = atomic mass or molecular mass.

o IONIC CRYSTALS

C.No.	Limiting radius ratio $\left(\frac{r_{+}}{r_{-}}\right)$
3	0.155 - 0.225 (Triangular)
4	0.225 - 0.414 (Tetrahedral)
6	0.414 - 0.732 (Octahedral)

8 0.732 - 0.999 (Cubic).

O EXAMPLES OF A IONIC CRYSTAL

a. Rock Salt (NaCl) Coordination number (6 : 6)b. CsCl C.No. (8 : 8)

Edge length of unit cell :-

$$a_{fcc} = \frac{4}{\sqrt{3}} \left(r_{ca^{2+} + r_{s^{2-}}} \right)$$

c. Zinc Blende (ZnS) C.No.(4:4)

$$a_{fcc} = \frac{4}{\sqrt{3}} \Big(r_{Zn^{2+}} + r_{F^-} \Big)$$

d. Fluorite structure (CaF2) C.No. (8:4)

$$a_{fcc} = \frac{4}{\sqrt{3}} \left(r_{ca^{2+}} + r_{F^{-}} \right)$$

Solutions

1. OSMOTIC PRESSURE:

- i. $\pi = \rho g h$ Where, $\rho = density$ of solution, h = equilibrium height.
- ii. Van't-Hoff Formula (For calculation of O.P.)

 $\pi=CRT=\frac{n}{V}RT$ (like ideal gas equation) ∴C = total conc. of all types of particles = C₁+C₂+C₃+..... = $\frac{(n_1+n_2+n_3+....)}{V}$

Note: If V1 ml of C1 conc. +V2 ml of C2 conc. are mixed.

$$\pi = \left(\frac{C_1 V_1 + C_2 V_2}{V_1 + V_2}\right) RT \quad ; \quad \pi = \left(\frac{\pi_1 V_1 + \pi_2 V_2}{RT}\right)$$

Type of solutions:

- **a.** Isotonic solution-Two solutions having same O.P $\pi_1 = \pi_2$ (at same temp.)
- **b.** Hyper tonic- If $\pi_1 > \pi_2$ \Rightarrow Ist solution is hypertonic solution w.r.t. IInd solution.
- **c. Hypotonic-**IInd solution is hypotonic w.r.t. Ist solution.

Abnormal Colligative Properties (In case of association or dissociation)

VAN'T HOFF CORRECTION FACTOR (i):

$$i = \frac{Exp/Observed/Actual/Abnormal value of colligative property}{Theoritical value of colligative property}$$

$$= \frac{Exp./Observed no.of particles/Conc.}{Theoritical no.of particles} = \frac{Observed molality}{Theoritical molality}$$

$$= \frac{Theoretical molar mass(formula mass)}{Theoretical/Observed molar mass(apparent molar mass)}$$

$$i>1 \Rightarrow dissociation.$$

$$i=\frac{\pi_{exp}}{\pi_{theore}}$$

 π_{theor} $\therefore \pi = \text{iCRT}$ $\pi = (\text{iCRT})$ $\pi = (\text{i1}C_1 + \text{i}_2C_2 + \text{i}_3C_3.....)RT$

0

0

Relation between i & α (degree of dissociation): i =1+ (n-1) α ; where, n = x + y

Relation between degree of association β & i.

$$i=1+\left(\frac{1}{n}-1\right)\beta$$

2. RELATIVE LOWERING OF VAPOUR PRESSURE (RLVP):

Vapour pressure: $P_{soln.} < P$ Lowering in VP=P=P₃= ΔP

Relative lowering in vapour pressure RLVP = $\frac{\Delta P}{P}$

Raoult's law: - (For non-volatile solutes)

Experimentally relative lowering in V.P =mole fraction of the non-volatile solute in solutions.

$$RLVP = \frac{P - P_s}{P} = X_{solute} = \frac{n}{n + N}$$

Where, n = No. of moles of solute; N = No. of moles of solvent

$$\frac{P - P_{s}}{P_{s}} = \frac{n}{N}$$

 $\frac{P - P_s}{P_s} = (\text{molality}) \times \frac{M}{1000}$ (M = molar mass of solvent)

It solute gets associated or dissociated

$$\frac{P - P_s}{P_s} = \frac{i.n}{N}$$
$$\frac{P - P_s}{P_s} = i \times (molality) \times \frac{M}{1000}$$

- According to Raoult's law:
- i. $P_1=P_1^0 X_1$; Where X_1 is the mole fraction of the solvent (liquid).
- ii. An alternate form $\rightarrow \frac{p_1^0 p_1}{p_1^0} = X_2$

 X_2 is the mole fraction of the solvent

\circ Ostwald-Walker Method: Experimental or lab determination of

 $\frac{\Delta P}{P} \text{ or } \frac{\Delta P}{P_{s}}$ $\frac{P - P_{s}}{P_{s}} = \frac{\text{Loss in wt. of solvent}}{\text{Loss in wt. of solution}}$ $\frac{P - P_{s}}{P_{s}} = \frac{\text{Loss in wt. of solvent}}{\text{Gain in wt. of dehydrating agent}}$

3. ELEVATION IN BOILING POINT:

 $\Delta T_b = i \times K_b \times m$

Where, ΔT_b = Boiling point elevation; K_b = Boiling point elevation constant; m = molality of the solution

$$K_{b} = \frac{RT_{b}^{2}}{1000 \times L_{vap}} \qquad OR \qquad K_{b} = \frac{RT_{b}^{2}M}{1000 \times \Delta H_{vap}}$$
$$L_{vap} = \left(\frac{\Delta H_{vap}}{M}\right)$$

 ΔH_{vap} = Enthalpy of vaporization

4. DEPRESSION IN FREEZING POINT

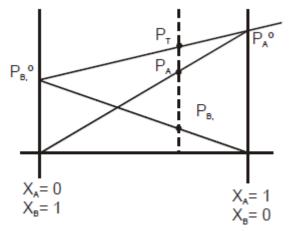
 $::\Delta T_{\rm f} = i \times K_{\rm f} \times m$

 $K_{f} = \text{molal depression constant} = \frac{RT_{f}^{2}}{1000 \times L_{fusion}} = \frac{RT_{f}^{2}}{1000 \times \Delta H_{fusion}}$

RAOULT'S LAW FOR BINARY (IDEAL) MIXTURE OF VOLATILE LIQUIDS:

 $P_A = X_A P_A^\circ$ $\therefore P_B = X_A P_B^\circ$ If $X_A^\circ > X_B^\circ$ \therefore A is more volatile than B \therefore B.P of A<B.P of B</td>

 $\therefore According to Dalton's law$ $P_T=P_A+P_B=X_AP_A^{\circ}+X_BP^{0}_B$ $X_A'=mole fraction of A in vapour about the liquid/ solution.$ $X_B'= mole fraction of B$ $P_A=X_AP_A^{\circ} = X_A'P_T$ $P_B=X_B'P_T = X_BP_B^{\circ}$ $<math>\frac{1}{P_T} = \frac{X_A'}{P_A'} + \frac{X_B'}{P_B}$ **Graphical Representation:**



A more volatile than B ($P_A^{\circ}>P_B^{\circ}$)

Ideal solutions (mixtures):

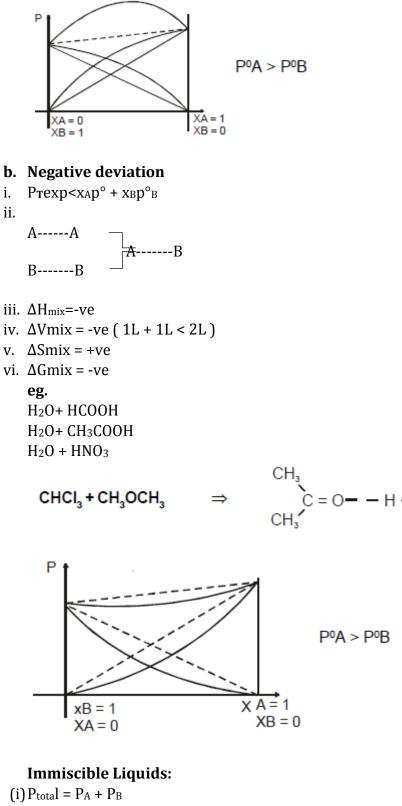
Mixtures which follow Raoul'ts law at all temperature.

Eg. 1) Benzene + Toluene 2) Hexane +heptane. 3) C₂H₅Br+C₂H₅I

Non-Ideal solutions: Which do not obey Raoult's law

a. Positive deviation:-

```
P_{T.exp} > (X_A P_A^0 + X_B P_B^0)
i.
ii.
     A-----A
     В-----В
                T
     (Weak force of attraction)
iii. \Delta H_{mix} = +ve energy absorbed
iv. \Delta V_{mix} = +ve (1L + 1L > 2L)
v. \Delta S_{mix} = +ve
vi. \Delta G_{mix} = .ve
     Eg.
     H<sub>2</sub>O+CH<sub>3</sub>OH
     H<sub>2</sub>O+C<sub>2</sub>H<sub>5</sub>OH
     C<sub>2</sub>H<sub>5</sub>OH+hexane
     C<sub>2</sub>H<sub>2</sub>OH+cyclohexane.
     CHCl<sub>3</sub>+CCl\rightarrowdipole dipole interaction becomes weak.
```

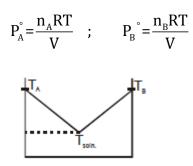


CI _CI

- (i) $P_{A} = P_{A}^{0} X_{A} = P_{A}^{0}$ [Since, $X_{A} = 1$]. (iii) $P_{B} = P_{B}^{0} X_{B} = P_{B}^{0}$ [Since, $X_{B} = 1$]. (iv) $P_{total} = P_{A}^{0} + P_{B}^{\circ}$
- $(\mathbf{v}) \quad \frac{\mathbf{P}_{A}^{\circ}}{\mathbf{P}_{B}^{\circ}} = \frac{\mathbf{n}_{A}}{\mathbf{n}_{B}}$

$$(vi) \frac{P_A}{P_B^{\circ}} = \frac{W_A M_B}{M_A W_B}$$

www.topperlearning.com



B.P. of solution is less than the individual B.P.'s of both the liquids.

Henry Law: $m \alpha P$ m=kp $m \rightarrow \frac{Weight of gas}{Volume of liquid}$

Equilibrium

Equilibrium constant (K):

 $K = \frac{\text{rate constant of forward reaction}}{\text{rate constant of backward reaction}} = \frac{K_{\text{f}}}{K_{\text{b}}}$

Equilibrium constant in terms of concentration (Kc):

$$\frac{K_{f}}{K_{b}} = K_{c} = \frac{\left[C\right]^{c} \left[D\right]^{d}}{\left[A\right]^{a} \left[B\right]^{b}}$$

Equilibrium constant in terms of partial pressure (K_P):

$$\mathbf{K}_{\mathrm{p}} = \frac{\left[\mathbf{P}_{\mathrm{C}}\right]^{\mathrm{c}} \left[\mathbf{P}_{\mathrm{D}}\right]^{\mathrm{d}}}{\left[\mathbf{P}_{\mathrm{A}}\right]^{\mathrm{a}} \left[\mathbf{P}_{\mathrm{B}}\right]^{\mathrm{b}}}$$

Equilibrium constant in terms of mole fraction (K_x):

$$\mathbf{K}_{\mathrm{x}} = \frac{\mathbf{X}_{\mathrm{C}}^{\mathrm{c}} \mathbf{X}_{\mathrm{D}}^{\mathrm{d}}}{\mathbf{X}_{\mathrm{A}}^{\mathrm{a}} \mathbf{X}_{\mathrm{B}}^{\mathrm{b}}}$$

Relation between K_p & K_c: $K_p = K_c.(RT)^{\Delta n}$.

Relation between $K_p \& K_x$: $K_P = K_x (P)^{\Delta n}$

 $\log \frac{K_2}{K_1} = \frac{\Delta H}{2.303 R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]; \Delta H = \text{Enthalpy of reaction}$

Relation between equilibrium constant & standard free energy change: $\Delta G^{\circ}\text{=-}2.303~RT~log~K$

Reaction Quotient (Q):

The values of expression
$$Q = \frac{\left[C\right]^{c} \left[D\right]^{d}}{\left[A\right]^{a} \left[B\right]^{b}}$$

Degree of Dissociation (α):

α = no. of moles dissociated / initial no. of moles taken
= fraction of moles dissociated out of 1 mole.
Note: % dissociation = α × 100
Observed molecular weight and Observed Vapour Density of the mixture:
Observed molecular weight

= molecular weight of equilibrium mixture total no.of moles

www.topperlearning.com

$$\alpha = \frac{D-d}{(n-1) \times d} = \frac{M_T - M_o}{(n-1)M_o} \qquad [(Vapour density)_{initial} = D, (Vapour density)_{eq} = d]$$

[Theoritical molecular weight= M_{T_i} Observed molecular weight= M_o]

Vapour Pressure of Liquid: Relative Humidity = $\frac{Partial Pressure of H_2 O vapours}{Vapour pressure of H_2 O at that temp.}$ Thermodynamics of Equilibrium: $\Delta G = \Delta G^0 + 2.303 \text{ RT } \log_{10} Q$ Vant Hoff equation: $\log \left(\frac{K_1}{K_2}\right) = \frac{\Delta H^\circ}{2.303 R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$

IONIC EQUILIBRIUM

1. OSTWALD DILUTION LAW:

o Dissociation constant of weak acid (Ka),

$$K_{a} = \frac{\left[H^{+}\right]\left[A^{-}\right]}{HA} = \frac{\left[C\alpha\right]\left[C\alpha\right]}{C(1-\alpha)} = \frac{C\alpha^{2}}{1-\alpha}$$

If $\alpha <<1$, then 1- $\alpha \cong 1$ or $K_a=ca^2$ or $\alpha = \sqrt{\frac{K_b}{C}} = \sqrt{K_a \times V}$

• Similarly for a weak base, $\alpha = \sqrt{\frac{K_b}{C}}$. Higher the value of K_a/K_b, strong is the acid/base.

Acidity and pH scale:

 \therefore pH=-log[H⁺] is the activity of H⁺ ions = molar concentration for dilute solution.

[Note: pH can also be negative or >14] pH=-log[H⁺]; [H⁺]=10^{-pH} pOH=-log[OH⁻]; [OH⁻]=10^{-pOH} pKa=-log Ka; Ka=10^{-pKa} pKb=-log Kb; Kb=10^{-pkb}

PROPERTIES OF WATER:

- 1. In pure water [H⁺]=[OH⁻], so it is Neutral.
- 2. Moler concentration of water=55.56 M
- 3. Ionic product of water (K^w):

 $K_w = [H^+][OH^-] = 10^{-14} \text{ at } 25^\circ (experimentally)$ pH = 7 = pOHpH < 7 or pOH > 7 \Rightarrow pH > 7 or pOH < 7 \Rightarrow Basic

4. Degree of dissociation of water(K_w):

 $\alpha = \frac{\text{no.of moles dissociate}}{\text{Total No.of moles in itially taken}} = \frac{10^{-7}}{55.55} = 18 \times 10^{-10} \text{ Or } 1.8 \times 10^{-7} \%$

5. Absolute dissociation constant of water:

$$\begin{split} K_{a} &= K_{b} = \frac{\left[H^{+}\right]\left[OH^{-}\right]}{\left[H_{2}O\right]} = \frac{10^{-7} \times 10^{-7}}{55.55} = 1.8 \times 10^{-16} \\ pK_{a} &= pK_{b} = -\log(1.8 \times 1^{-16}) = 16 - \log 1.8 = 15.74 \\ K_{a} \times K_{b} &= [H^{+}] [OH^{-}] = K_{w} \\ \Rightarrow \text{Note: for a conjugate acid-base pairs} \\ pK_{a} + pK_{b} = pK_{w} = 14 \\ at 25^{\circ}\text{C} \\ pK_{a} \text{ of } H_{3}^{+} \text{ ions} = -1.74 \\ pK_{b} \text{ of } OH^{-} \text{ions} = -1.74. \end{split}$$

o pH Calculations of Different Types of Solutions:

a. Strong acid solution:

- i. If concentration is greater than 10.6M In this case H+ ions coming from water can be neglected,
- ii. If concentration is less than 10.6 M In this case H+ ions coming from water cannot be neglected

b. Strong base solution:

Using similar method as in part (a) calculate first [OH] and then use [H⁺]×[OH⁻]=10⁻¹⁴

c. pH of mixture of two strong acids :

Number of H+ ions from I-solution = N_1V_1 Number of H+ ions from II-solution = N_2V_2

$$\left[\mathbf{H}^{+} \right] = \mathbf{N} = \frac{\mathbf{N}_{1}\mathbf{V}_{1} + \mathbf{N}_{2}\mathbf{V}_{2}}{\mathbf{V}_{1} + \mathbf{V}_{2}}$$

d. pH of mixture of two strong bases:

$$\left[OH^{-}\right] = N = \frac{N_1V_1 + N_2V_2}{V_1 + V_2}$$

e. pH of mixture of a strong acid and a strong base:

If $N_1V_1 > N_2V_2$, then solution will be acidic in nature and

$$\left[\mathbf{H}^{+} \right] = \mathbf{N} = \frac{\mathbf{N}_{1}\mathbf{V}_{1} - \mathbf{N}_{2}\mathbf{V}_{2}}{\mathbf{V}_{1} + \mathbf{V}_{2}}$$

If $N_2V_2 > N_1V_1$, then solution will be basic in nature and

$$\left[OH^{-}\right] = N = \frac{N_{2}V_{2} - N_{1}V_{1}}{V_{1} + V_{2}}$$

f. pH of a weak acid(monoprotic) solution :

$$K_{a} = \frac{[H^{+}][OH^{+}]}{[HA]} = \frac{C\alpha^{2}}{1-\alpha}$$

if $\alpha <<1$ (1- α) $\approx 1 \Rightarrow K_{a}$

$$II \alpha << I (I-\alpha) \approx I \Rightarrow K_a \approx C\alpha^2$$

 $\alpha = \sqrt{\frac{K_a}{C}}$ (is valid if $\alpha < 0.1$ or 10%)

On increasing the dilution $\Rightarrow C \downarrow \Rightarrow \alpha \uparrow and [H^+] \downarrow \Rightarrow pH \uparrow$

g. pH of a solution of a polyprotic weak acid

$$pH = \frac{1}{2}(pKa - \log C).$$

RELATIVE STRENGTH OF TWO ACIDES

$\left[H^{+} \right]$ furnished by I acid	$-\frac{\mathbf{c}_1 \alpha_1}{\mathbf{c}_1} - \frac{\mathbf{K}_{a_1} \mathbf{c}_1}{\mathbf{c}_1}$	
$\left[H^{+} \right]$ furnished by II acid	$-\frac{1}{c_1\alpha_1} - \sqrt{K_{a_2}c_2}$	

h. pH of a mixture of two weak acid(both monoprotic) solutions:

 $\begin{bmatrix} H^{+} \end{bmatrix} = \sqrt{K_{a1}C_{1} + K_{a2}C_{2} + K_{w}}$ $C_{w}K_{w} = 10^{-14} = K_{w}$ $\begin{bmatrix} H^{+} \end{bmatrix} = \sqrt{C_{1}K_{a1} + C_{2}K_{a2} + 10^{-14}}$

i. pH of a mixture of weak acid (monoprotic) and a strong acid solution: If [SA]=C₁ and [WA]=C₂, then [H⁺] from SA =C₁and [H⁺] from WA=C₂ Let HA is a weak acid.

$$\left[H^{+}\right] = \frac{C_{1} + \sqrt{C_{1}^{2} + 4K_{a.}C_{2}}}{2}$$

** If a strong acid of low conc is added in water then [H+] of solution can be calculated as

$$[H^+] = \frac{C_1 + \sqrt{C_1^2 + 4K_W}}{2}$$

• SALT HYDROLYSIS:

	Salt of	Type of hydrolysis	Kh	h	рН
a.	weak acid & strong base anionic	anionic	$\frac{k_w}{k_a}$	$\sqrt{\frac{k_w}{k_a c}}$	$7 + \frac{1}{2}pk_a + \frac{1}{2}\log c$
b.	strong acid & weak base	cationic	$\frac{k_w}{k_b}$	$\sqrt{\frac{k_w}{k_bc}}$	$7 + \frac{1}{2}pk_b + \frac{1}{2}logc$
c.	weak acid & weak base	Both	$\frac{\mathbf{k}_{w}}{\mathbf{k}_{a}\mathbf{k}_{b}}$	$\sqrt{\frac{k_w}{k_ak_bc}}$	$7\!+\!\frac{1}{2}pk_a\!+\!\frac{1}{2}pk_b$
d.	Strong acid & strong base	do not hydr	colysed	•	pH=7

Hydrolysis of polyvalent anions or cations

For $[Na_3PO_4] = C$ $K_{a1} \times K_{h3} = K_3$ $K_{a1} \times K_{h2} = K_W$ $K_{a3} \times K_{h1} = K_W$ Generally pH is calculated only using the first step Hydrolysis

$$K_{h1} = \frac{Ch^2}{1-h} \approx Ch^2$$

$$h = \sqrt{\frac{K_{h1}}{C}} \implies [OH^-] = ch = \sqrt{Kh_1 \times c} \implies [H^+] = \sqrt{\frac{K_w \times K_{a3}}{C}}$$
So, $pH = \frac{1}{2} [pK_w + pK_{a3} + \log C]$

BUFFER SOLUTION

- a. **Acidic Buffer**: e.g NH₃OH+NH₄Cl. (weak base and salt of its conjugate acid). $pH = pK_a + log \frac{[Salt]}{[Acid]}$ [Henderson's equation]
- b. **Basic Buffer**: e.g. NH4OH+NH4Cl. (Weak base and salt of its conjugate acid). $pOH = pK_b + log \frac{[Salt]}{[Base]}$

Buffer capacity (index):

Buffer capacity = $\frac{\text{Total no. of moles of acid / alkali added per litre Change in PH}}{\text{Change in pH}}$ Buffer capacity = $\frac{dx}{d\Delta pH} = 2.303 \frac{(a+x)(b+x)}{a+b}$

INDICATOR:

HIn**≓**H⁺+In⁻

Or
$$[H^+] = H^+ \times \frac{[HIn]}{[In]}$$

∴ pH = pK_{HIn} + log $\frac{[In]}{[HIn]}$
⇒ pH = pK_{HIn} + log $\frac{[Ionised form]}{[Unionised form]}$

o ISOELECTRIC POINT:

$$\begin{bmatrix} H^+ \end{bmatrix} = \sqrt{K_{a1}K_{a2}}$$
$$pH = \frac{pK_{a1} + pK_{a2}}{2}$$

SOLUBILITY PRODUCT: $K_{sp} = (xs)^{x} (ys)^{y} = x^{x} \cdot y^{y} \cdot (s)^{x+y}$

Redox Reaction and Electrochemistry

ELECTODE POTENTIAL

For any electrode \rightarrow oxidation potential(O.P.)=-Reduction potential(R.P.) **E**_{cell}=R.P of cathode – R.P of anode **E**_{cell}=R.P of cathode +O.P of anode **E**^o_{cell} is always a +ve quality & Anode will be electrode of low R.P.

GIBBS FREE ENERGY CHANGE:

 $\Delta G=-nFE_{cell}$ $\Delta G^{\circ}=-nFE^{\circ}_{cell}$

NERNST EQUATION (Effect of concentration and temp of an emf of cell)

 $\Rightarrow \Delta G = \Delta G^{\circ} + RT \ln Q \quad (Where Q is reaction quotient)$ $\Delta G^{\circ} = -RT \ln K_{eq}$ $E_{cell} = E_{cell}^{\circ} - \frac{RT}{nF} \ln Q$ $E_{cell} = E_{cell}^{\circ} - \frac{2.303RT}{nF} \log Q$ $E_{cell} = E_{cell}^{\circ} - \frac{0.0591}{n} \log Q \quad [At 298K]$ At chemical equation $\Delta G = 0; \quad E_{cell} = 0$ $\circ \qquad \log K_{eq} = \frac{nE_{cell}^{\circ}}{0.0591}$ $E_{cell}^{\circ} = \frac{0.0591}{n} \log K_{eq}$ For an elecrode M(s) / Mⁿ⁺ $E_{M^{n+}/M} = E_{M^{n+}/M}^{\circ} - \frac{2.303RT}{nF} \log \frac{1}{M^{n+}}$

CONCENTRATION CELL:

- a. Electrolyte Concentration Cell: eg. Zn(s) / Zn²⁺ (c₁) || Zn²⁺(c₂) / Zn(s) $E = \frac{0.0591}{2} \log \frac{C_2}{C_1}$
- b. Electrode Concentration Cell: Eg. Pt, H₂(P₁atm)/H⁺(1M) /H₂(P₂atm)/Pt $E = \frac{0.0591}{2} log \left(\frac{P_1}{P_2}\right)$

DIFFERENT TYPES OF ELECTRODES:

- 1. Metal-Metal ion Electrode M(s)/Mⁿ⁺. Mⁿ⁺+ne⁻ \rightarrow M(s) E = E[°] + $\frac{0.0591}{n} \log[M^{n+}]$
- 2. Gas-ion Electrode Pt/H₂(Patm)/Hⁿ⁺(XM) as a reduction electode

H⁺ (aq) + e⁻ →
$$\frac{1}{2}$$
H₂ (Patm)
E = E° - 0.0591 log $\frac{P_{H}^{\frac{1}{2}}}{\left[H^{+}\right]}$

 Oxidation-reduction Electrode Pt/Fe²⁺,Fe³⁺ As a reduction electrode Fe³⁺+e⁻→Fe²⁺

$$\mathbf{E} = \mathbf{E}^{\circ} - 0.0591 \log \frac{\left[\mathbf{F} \mathbf{e}^{2+} \right]}{\left[\mathbf{F} \mathbf{e}^{3+} \right]}$$

4. Metal-Metal insoluble salt Electrode eg. Ag/AgCl, Clas a reduction electrode AgCl(s)+e⁻ \rightarrow Ag(s)+Cl-E_{cl⁻/AgCl/Ag}=E^o_{cl⁻/Agcl/A}-0.0591 log[Cl⁻]

CALCULATION OF DIFFERENT THERMODYNAMICS FUNCTION OF CELL REACTION

 \circ $\Delta G=-n F E_{cell}$

$$\circ \qquad S = -\left[\frac{dG}{dT}\right]_{p} \qquad \text{(At constant pressure)}$$

$$\circ \qquad \Delta S = -\left[\frac{d(\Delta G)}{dT}\right]_{p} = nF\left(\frac{d}{dt}(E_{cell})\right)_{p}$$

 $\circ \qquad \left\lfloor \frac{\partial E}{\partial T} \right\rfloor_{p} = \text{Temperature cofficient of e.m.f of the cell.}$

E=a+bT+cT²+....

$$\circ \qquad \Delta H = nF \left[T \left(\frac{\partial E}{\partial T} \right)_{p} - E \right]$$

 \circ ΔCp of cell reaction

$$Cp = \frac{dH}{dT}$$
$$\Delta Cp = \frac{d}{dT} (\Delta H)$$
$$\Delta C_{p} = nFT \frac{d^{2} E_{cell}}{dT^{2}}$$

FARADAY'S LAW OF ELECTROLYSIS: First Law:

w = zq

w = Z it Z = Electrochemical equivalent of substance

Second law: $W\alpha E \qquad \frac{W}{E} = Cons \tan t$ $\frac{W_1}{E_1} = \frac{W_2}{E_2} = \dots$

 $\frac{W}{E} = \frac{i \times t \times \text{current efficiency factor}}{96500}$ $\frac{W}{E} = \frac{1 \times U \times Current En }{96500}$ CURRENT EFFICIENCY = $\frac{\text{actual mass deposited/produced}}{\text{Theoritical mass deposited/produced}} \times 100$ **<u>CONDITION FOR SIMULTANEOUS DEPOSITION OF Cu & Fe on cathode.</u>** 0 $E^{\circ}_{cu^{2+}/cu} - \frac{0.0591}{2}\log\frac{1}{Cu^{2+}} = E^{\circ}_{Fe^{2+}/Fe} - \frac{0.0591}{2}\log\frac{1}{Fe^{2+}}$ Condition for the simultaneous deposition of Cu & Fe on cathode. **CONDUCTANCE:** Conductance= $\frac{1}{\text{Resistance}}$ • Specific conductors or conductivity • (Reciprocal of specific resistance) $\kappa = \frac{1}{2}$ K=specific conductance • Equivalent conductance: $\lambda_{\rm E} = \frac{\kappa \times 1000}{\rm Normality}$ unit: $ohm^{-1}cm^2eq^{-1}$ • Molar conductance: $\lambda_{\rm m} = \frac{\kappa \times 1000}{Molarity}$ unit:-ohm⁻¹cm²mole⁻¹ Specific conductance=conductance $\times \frac{l}{2}$

KOHLRAUSCH'S LAW: Variation of λ_{eq}/λ_M of a solution with concentration:

- i. Strong electrolyte $\lambda_{M}^{c} = \lambda_{M}^{\infty} b\sqrt{c}$
- ii. Weak electrolyte: $\lambda_{\infty} = n_+ \lambda_{+}^{\infty} + n_- \lambda_{-}^{\infty}$ where λ is the molar conductivity $n_+ = No$. of cations obtained after dissociation per formula unit $n_- = No$. of anions obtained after dissociation per formula unit

APPLICATION OF KOHLRAUSCH LAW:

- 1. Calculation of λ^{0}_{M} of weak electrolytes: $\lambda^{0}_{M(CH_{3}COOH)} = \lambda^{0}_{M(CH_{3}COON_{a})} + \lambda^{0}_{M(HCI)} \cdot \lambda^{0}_{M(NaCI)}$
- 2. To calculate degree of dissociation of a weak electrolyte

$$\label{eq:alpha} \alpha = \frac{\lambda_{\rm m}^{\rm c}}{\lambda_{\rm m}^{\rm 0}} \hspace{1.5cm} ; \hspace{1.5cm} K_{\rm eq} = \frac{c\alpha^2}{\left(1\!-\!\alpha\right)}$$

3. Solubility (S) of sparingly soluble salt & their K_{sp} $\lambda_{M}^{c} = \lambda_{M}^{\infty} = \kappa \times \frac{1000}{\text{Solubility}}$

 $\lambda_{M}^{c} = \lambda_{M}^{c} = \kappa \times \frac{1}{\text{Solubility}}$ $K_{SD} = S^{2}$

Absolute ionic mobility:

 $\begin{array}{ll} \lambda^{0}{}_{c} \propto \mu_{c} & ; & \lambda^{0}{}_{a} \propto \mu_{a} \\ \lambda^{0}{}_{c} = F \ \mu_{c}{}^{0} & ; & \lambda^{0}{}_{c} = F \times \mu_{c}{}^{0} \\ \text{Ionic Mobility } \mu = \frac{v \rightarrow \text{Speed}}{(v / \ell) \rightarrow \text{Potential gradient}} \end{array}$

Transport Number:

$\mathbf{t}_{c} = \left[\frac{\mu_{c}}{\mu_{c} + \mu_{a}}\right],$	$t_{a} = \left[\frac{\mu_{a}}{\mu_{a} + \mu_{c}}\right]$
--	--

Where t_c = Transport Number of cation & t_a = Transport Number of anion

Chemical Kinetics

CHEMICAL KINETICS & REDIOACTIVITY

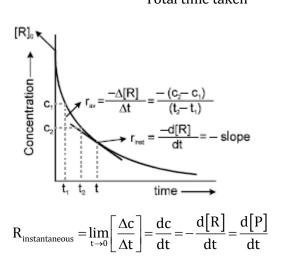
RATE/VELOCITY OF CHEMICAL REACTION:

Rate = $\frac{\Delta c}{\Delta t} = \frac{\text{mol/lit}}{\text{sec}} = \text{mol lit}^{-1} \text{time}^{-1} = \text{mol dm}^{-3} \text{time}^{-1}$

Types of Rates of chemical reaction:

For a reaction $R \rightarrow P$

Average rate= $\frac{\text{Total change in concentration}}{\text{Total time taken}}$



RATE LAW (DEPENDENCEOFRATEONCONCENTRATIONOFREACTANTS):

Rate = K (conc.) order - differential rate equation or rate expression

Where $K = Rate constant = specific reaction rate = rate of reaction when concentration is unity unit of K = (conc)^{1- order} time^{-1}$

Order of reaction:

 $m_1A + m_2B \longrightarrow products.$

 $R \propto [A]^p [B]^q$ Where p may or may not be equal to m1 & similarly q may or may not be equal to m2.

p is order of reaction with respect to reactant A and q is order of reaction with respect to reactant B and (p + q) is **overall order of the reaction**.

INTEGRATED RATE LAWS:

 C_0 or 'a' is initial concentration and C_t or a - x is concentration at time't'

a. zero order reactions :

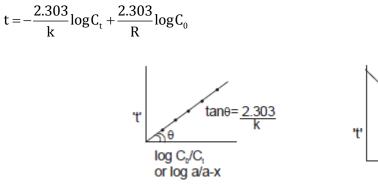
Rate = k [conc.]° = constant Rate = k = $\frac{C_0 - C_t}{'t'}$ or $C_t = C_0 - kt$ Unit of K=mol lit⁻¹sec⁻¹, Time for completion= $\frac{C_0}{k}$

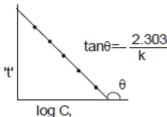
At
$$t_{1/2}$$
, $C_t = \frac{C_0}{2}$, so $kt_{1/2} = \frac{C_0}{2} \Longrightarrow t_{1/2} = \frac{C_0}{2k} \therefore t_{1/2} \alpha C_0$

b. First Order Reactions:

i. Let a 1st order reaction is, A
$$\longrightarrow$$
 Products
 $t = \frac{2.303}{k} \log \frac{a}{a-x}$ or $k = \frac{2.303}{t} \log \frac{C_0}{C_t}$
 $\Rightarrow t_{1/2} = \frac{\ell n 2}{k} = \frac{0.693}{k} = \text{Independant of initial concentration}$
 $t_{avg} = \frac{1}{k} = 1.44 t_{1/2}$

Graphical Representation:





c. Second order reaction:

2nd order Reactions Two types

A +A → Products A + B → Products. a a b 0 (a-x)(a-x) a-x b-x $\therefore \frac{dx}{dt} = k(a-x)^2 \qquad \frac{dx}{dt} = k(a-x)(b-x)$ $\Rightarrow \frac{1}{(a-x)} - \frac{1}{a} = kt \qquad k = \frac{2.303}{t(a-b)} \log \frac{b(a-x)}{a(b-x)}$

d. Psuedo first order reaction:

$$\Rightarrow k = \frac{2.505}{bt} \log \frac{a}{a - x}$$

: 'b' is very large can be taken as constant

$$\Rightarrow kb = \frac{2.303}{bt} \log \frac{a}{a-x}$$

$$\Rightarrow k' = \frac{2.303}{t} \log \frac{a}{a-x}$$
, k is psuedo first order rate constant

www.topperlearning.com

METHODS TO DETERMINE ORDER OF A REACTION

a. Initial rate method:

 $r = k [A]^{a} [B]^{b} [C]^{c} if \qquad [B] = constant$ [C] = constantthen for two different initial concentrations of A we have $r_{01} = k [A_{0}]_{1}^{a}, \qquad r_{0}^{2} = k [A_{0}]_{2}^{a}$ $r_{c} ([A_{c}]_{c})^{a}$

$$\Longrightarrow \frac{\mathbf{r}_{0_1}}{\mathbf{r}_{0_2}} = \left(\frac{\left\lfloor \mathbf{A}_0 \right\rfloor_1}{\left\lfloor \mathbf{A}_0 \right\rfloor_2}\right)$$

b. Using integrated rate law: It is method of trial and error.

c. Method of half lives:

 $\label{eq:constraint} \textit{for}\, n^{\textit{th}} \textit{order reaction} \quad t_{1/2} \alpha \frac{1}{\left[R_0\right]^{n-1}}$

d. Ostwald Isolation Method :

rate = k [A]^a [B]^b [C]^c = k_0 [A]^a

MEHODS TO MONITOR THE PROGRESS OF THE REACTION:

a. Progress of gaseous reaction can be monitored by measuring total pressure at a fixed volume & temperature or by measuring total volume of mixture under constant pressure and temperature.

 $k = \frac{2.303}{t} \log \frac{P_0(n-1)}{nP_0 - P_t}$ {Formula is not applicable when n=1, the value of n can be fraction also.}

b. By titration method:

1.
$$\therefore a \propto V_0 \ a \cdot x \propto Vt \Rightarrow k = \frac{2.303}{t} \log \frac{V_0}{V_t}$$

2. Study of acid hydrolysis of an easter.

$$k = \frac{2.303}{t} \log \frac{V_{\infty} - V_0}{V_{\infty} - V_t}$$

3. By measuring optical rotation produced by the reaction mixture: 2 303 $\theta_1 - \theta_2$

$$k = \frac{2.303}{t} \log \frac{\theta_0 - \theta_\infty}{\theta_t - \theta_\infty}$$

EFFECT OF TEMPERATUREON RATEOF REACTION.

 $T.C = \frac{K_t + 10}{K_t} \approx 2$ to 3(for most of the reactions)



 SH_R =Summation of enthalpies of reactants SH_P = Summation of enthalpies of reactants DH = Enthalpy change during the reaction Ea_1 = Energy of activation of the forward reaction Ea_2 = Energy of activation of the backward reaction $E_P > E_r \rightarrow$ endothermic $E_P < E_r \rightarrow$ exothermic

 $\Delta H = (E_p - E_r) = enthalpy change$ $\Delta H = E_{af} - E_{ab}$ $E_{threshold} = E_{af} + E_r = E_b + E_p$

Arhenius equation

 $k = A_e^{-E_a RT} \qquad r = k \text{ [conc.]}^{\text{order}}$ $\frac{d \ln k}{dT} = \frac{E_a}{RT^2} \qquad \log k = \left(-\frac{Ea}{2.303 \text{ R}}\right) \frac{1}{T} + \log A$

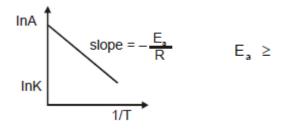
If k_1 and $k_2 be the rate constant of a reaction at two different temperature T1 and T2 respectively, then we have$

$$\log \frac{k_2}{k_1} = \frac{E_a}{2.303R} \cdot \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

$$\therefore \quad \ln k = \ln A - \frac{E_a}{RT}$$

$$O$$

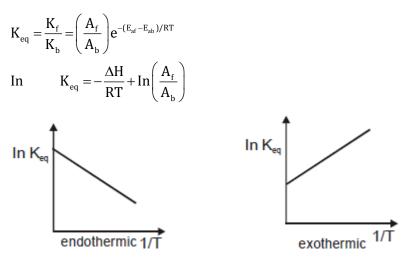
$$T \to \infty, k \to A$$



REVERSIBLE REACTIONS K_f = A_fe^{-Eaf/RT}

 $K_b = A_b e^{-Eab/RT}$

www.topperlearning.com



$$\frac{\begin{bmatrix} B \end{bmatrix}}{\begin{bmatrix} C \end{bmatrix}} = \frac{K_1}{K_2} \qquad \Longrightarrow \qquad E_a = \frac{E_{a_1}k_1 + E_{a_2}k_2}{k_1 + k_2}$$

ii. REVERSIBLE 1ST ORDER REACATION (both forward and backward)

$$x = \frac{K_{f}a}{K_{f} + k_{b}} \left(1 - e^{-(k_{f} + k_{b})t}\right)$$
$$k_{f} + k_{b} = \frac{1}{t} In \left(\frac{x_{eq.}}{x_{eq.} - x}\right)$$

iii. SEQUENTIAL 1^{ST} ORDERREACTION $[A]=[A]e^{-k_1}t$

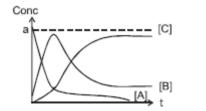
 $X=a(1-e^{-k_1t})$

$$y = \frac{K_1 a}{K_2 - K_1} \left\{ e^{-^{k_1 t}} - e^{-^{k_2 t}} \right\}$$

$$T_{B(max)} = \frac{1}{(K_1 - K_2)} In \frac{K_1}{K_2}$$

CASE-I

 $K_1 >> K_2$



CASE II :

 $K_2 >> K_1$

